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A Simplified Formula of Bridge Deck Flutter Based on the Quasi-Steady
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1. INTRODUCTION

Wind-induced phenomena have been treated by a variety of engineering disciplines, each having its particular
terminology. At a critical wind speed, commonly referred to as the negative damping threshold, this type of mechanism
may eventually lead to destructive forces on the bridge, as was the case in the collapse of Tacoma Narrows Bridge in
1940. The existing bridge state-of-art aeroelastic response methodology owes its origin to the studies made earlier on
airfoil or thin plate theory. Classical theories for the analysis of airfoils and thin plates were developed to better
understand the response characteristics of fixed-wing aircraft. The basic ideas behind their formulations are still being
used by researchers and form the basis of current bridge aerodynamcis analyses. In this paper, aerodynamic stability
based on quasi-steady assumption are briefly described and a comparison researches on flutter derivatives are introduced

from the point of aerodynamic force coefficients related with the aerodynamic derivatives.
2. BACKGROUND THEORY

The aerodynamic forces as shown in Fig. 1 are separated into aerodynamic force and buffeting components.
Movement-induced excitation is due to the aerodynamic force that arise from movements of the vibration body
oscillator. Even without an external exciting aerodynamic force, a body oscillator may undergo sustained vibration if
there is an energy source from which the oscillator can extract energy during each cycle of free movement. This

type of Vibration is called self excited and is related to aerodynamic stability (flutter).
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The full multi-mode system of equations can be expressed in matrix notation as
M) + Ca(@) + Ko@) = F“ (x,1,,.1,.77,) (1)
where 7= generalized coordinate vector, C and D = the modal damping and stiffness matrices of the system,

respectively, F“(x,8,7,.1,,77,) = the aeroelastic force.
Taking the Fourier transform on either side of Eq.(1) and then Eq.(2) is modal equilibrium equation in frequency

domain. For massive long bluff bodies in air flow, such as bridge decks, inertial components can be neglected.
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C*and K™= modal aeroelastic damping matrix and adroelastic stiffness matrix to be defined in terms of the

aerodynamic derivatives, respectively. = imaginary unit. Substituting Eq.(3) into Eq.(2), the compliance matrix

(non-dimensional frequency response matrix, H”(a))) is obtained as Eq. (4).
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The impedance matrix (dynamic stiffness) is then
& . 1 . . 1 .
Sﬂ (wr’ucr) = I:I - Kj/c - dlag|:a)/2:|wr2 + 21 : a)r : dlag |:a)/:|(dlag[§j:| - C-’jk ):| (5)

where @r and Yo = the corresponding in-wind preference or resonance frequency and critical velocity.
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It has been considered convenient to normalized aerodynamic damping and stiffness with PB°®. 12 gnd

2 .2
PB @ /2 in Eq.(6), where @ is the in-wind resonance frequency.
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Unstable behavioris caused by the effects of Xk and é/k. The effects of é/k is to change the damping

properties of the combined structure and flow system, while the effects of ¥k is to change the stiffness properties.
The bridge deck extracts energy from the flow that may result in a continuously growing response if this energy
exceeds the energy dissipated, and in the limit state the structural displacement response will become infinitely
large if the absolute value of the determinant to the non-dimensional impedance matrix is zero. The unstable
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behavior contains a combined motion in degree of freedom, in which case the instability limit may be identified
form Eq.(5). Otherwise, A purely single mode unstable behaviorcontains motion either in the vertical direction or
in torsion. Such an instability limit may then be identified from the first of the second row of the matrices in Eq.
(5) and is expressed as simplified formula. Based on the quasi-steady, the aerodynamic derivatives are expressed in
terms of static force coefficients as and non-dimensional velocity (Chen et al. 2002, Cho et al. 2007).Matsumoto
(1996) proposed the relationships between the aerodynamic derivatives as follows (Matsumoto et al. 1996)
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Adopting the relationship, Eq. (9), aerodynamic derivatives can be represented
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The bridge deck extracts energy from the flow that may result in a continuously growing response if this
energy exceeds the energy dissipated, and in the limit state the structural displacement response will become
infinitely large if the absolute value of the determinant to the non-dimensional impedance matrix is zero. The
unstable behavior contains a combined motion in d.o.f, in which case the instability limit may be identified form
Eq.(5). Otherwise, A purely single mode unstable behavior contains motion either in the vertical direction or in
torsion. Such an instability limit may then be identified from the first of the second row of the matrices in Eq.
(5) and is expressed as simplified formula. Dynamic stability limit in vertical and torsional direction are defined
by the following mean wind velocity.
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pB* —~(C, =C,-D/B) (in vertical dir) (12) pB C,

1/2
} (in torsional dir.) (13)

3. NUMERICAL EXAMPLE

Three different 2-edge girder models were made to investigate flutter derivatives. Sec-1, Sec-2 were constructed
at a geometric scale of 1:50 (tested in Univ. of Western Ontario) and Sec-3 model was test in Korea Univ.,

respectively (Cho et al.1, 2006). Structural frequency ratio(fh/ fa) is given as follow : Sec-1 = 3.0, Sec-2 = 2.59
and Sec-3 = 1.84.
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Fig. 2 Bridge deck sections

The conversion of the flutter derivatives to an equivalent aeroelastic damping as a ratio to critical is through the
following relationship (Eq. 14 and 15) for the vertical and torsional responses respectively. Therefore, a positive
value of the aerodynamic derivativeis indicative of negative aerodynamic damping.
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In Fig.3 the reduced wind speed is plotted against the in-wind frequency and damping ratio for the three reference

sets. As the onset of flutter is initiated when the net damping ratio becomes zero, the critical flutter speed can be

accurately evaluated based on the numerical results from Fig. 3. The in-wind damping in torsional motion represents



the negative sign beginning at reduced wind speeds of about 4.68, 7.23 and 3.58.
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Fig. 3 Equivalent in-wind resonance frequency and damping ratio

Table 1 illustrates the resulting real critical flutter speeds (V.) which were evaluated by wind tunnel test, Eq. (18) and
Eq. (20). A simplified flutter formula(Eq.13) based on the quasi-steady theory have critical flutter wind velocities which are
approximately 6%-~18% higher than Eq. 15. Compared to the cases 1~3, 2-edge girder section, the critical flutter wind
velocity increases with related to the structural frequency ratio and bridge mass moment of inertia.

Table 1. Results for the case studies

Case Wind Tunnel Test Equation (13) Equation (15) Difference
1 Not Observed 121.5 m/s 103.3 m/s 18 %
2 Not Observed 121.8 m/s 104.1 m/s 17 %

3 52.4 m/s 59.24 m/s 55.9 m/s 6 %

4. CONCLUSION REMARK

In this paper an approximate method to calculate flutter critical wind speed and damping ratiois presented. The
proposed simplified formula based on the quasi-steady theory is only applicable to cases in which the
bending-torsional modes are uncoupled. The proposed simplified formula have critical flutter wind velocities which
are approximately 6%~18% higher than purely s.d.o.f equivalent aeroelastic damping equations with flutter
derivatives (Eq. 14-15). Nevertheless, it helps to better understand the motion induced vibration (MIE), flutter
mechanism and represents the first step toward a simple engineering tool is capable of estimating the prediction of
the critical wind speed without flutter derivatives. Finally, the flutter velocity by similar sections with 2-edge girder
section is investigated. In particular, it is shown that, the critical flutter wind velocity increases with related to the
structural frequency ratio and bridge mass moment of inertia.

REFERENCE

1. X. Chen (2007) Improved understanding of bimodal coupled bridge flutter based on closed-form solutions, J.
Struct. Eng. ASCE 133, pp. 22-31

2. Cho, J.Y., Kim, Y.M. and Lee, H.E. (2006), Experimental Investigation of Aerodynamic Force Coefficients and
Flutter Derivatives of Bridge Girder Section (in Korean), J. Civil Eng., KSCE 26(5A), pp. 887-899.

3. Matsumoto (1996) The influence of aerodynamic derivatives on flutter, J. Wind Eng. Ind. Aerodynamics,
Elsevier 60, pp. 227-239

4. Cho, Y.R., Cho, J.Y.,, Roh, N.K. and Lee, H.E. (2006), Comparison of Methodology for Prediction of Flutter
Velocity in Bridges Girder, 4th National Congress on Fluids Engineering, Gyeongju.





