• Title/Summary/Keyword: self-equilibrium

Search Result 153, Processing Time 0.022 seconds

Application of DCOC for Minimum Cost Design of PPC Structrues (PPC 구조의 최소경비설계를 위한 DCOC방법의 응용)

  • 조홍동;이상근;구봉근;한상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.171-178
    • /
    • 1997
  • This paper describes the application of discretized continuum-type optimality criteria (DCOC) for the multispan partially prestressed concrete beams. The cost of construction as objective function which includes the costs of concrete, prestressing steel, non-prestressing steel and formwork is minimized. The design constraints include limits on the maximum deflection, flexural and shear strengths, in addition to ductility requirements, and upper and lower bounds on design variables as stipulated by the design code. Based on Kuhn-Tucker necessary conditions, the optimality criteria are explicitly derived in terms of the design variables-effective depth, eccentricity of prestressing steel and non-prestressing steel ratio. The prestressing profile is prescribed by parabolic functions. The self-weight of the structure is included in the equilibrium equation of the real system, as is the secondary effect resulting from the prestressing force. Two numerical examples of multispan PPC beams with rectangular cross-section are solved to show the applicability and efficiency fo the DCOC-based technique.

  • PDF

An Adaptive Construction of Quadrilateral Finite Elements Using H-Refinement (h-분할법에 의한 사각형 유한요소망의 적응적 구성)

  • 채수원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2932-2943
    • /
    • 1994
  • An efficient approach to the automatic construction of effective quadrilateral finite element meshes for two-dimensional analysis is presented. The procedure is composed of, firstly, an initial mesh generation and, secondly, an h-version of adaptive refinement based on error analysis. As for an initial mesh generation scheme, a modified looping algorithm has been employed. For the adaptive refinement process, an error indicator obtained by computing the residual error of the equilibrium equations in the energy norm with a relaxation factor has been employed. Examples of mesh generation and self-adaptive mesh improvements are given. These example solutions demonstrate that an effective mesh for a given error tolerance can be obtained in a few steps of the analysis processes.

Optimum Design of Reinforced Concrete Continuous Beams using DCOC (이산성 연속형 최적규준(DCOC)방법에 의한 RC연속보의 최적설계)

  • 조홍동;이상근;구봉근;한상훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.440-446
    • /
    • 1996
  • In this study, a procedure for the economic design of reinforced concrete beams under several design constraints is outlined on the basis of discretized continuum-type optimality criteria (DCOC). The costs to be minimized involve those of concrete, reinforcing steel and formwork. The design constraints include limits on the maximum deflection in a given span, on bending and shear strengths, in addition to upper and lower bounds on design variables. An explicit mathematical derivation of optimality criteria is given based on the well known Kuhn-Tucker mecessary conditions, followed by an iterative procedure for designs when the design variables are the depth and the steel ratio. Self-weight of the spans is also included in the equilibrium equation of the real system and in the optimatlity criteria.

  • PDF

Non-linear static analysis and design of Tensegrity domes

  • Fu, Feng
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.417-433
    • /
    • 2006
  • In this paper, a non-linear structural analysis software with pro-processing and post-recessing function is proposed by the author. The software incorporating the functions of the structural analysis and geometrical design of Tensegrity structures. Using this software, Cable Dome is analyzed as a prototype, a comprehensive study on the structural behavior of Tensegrity domes is presented in detail. Design methods of Tensegrity domes were proposed. Based on the analysis, optimizing design was performed. Several new Tensegrity domes with different geometrical design scheme are proposed, the structural analysis of the new schemes is also conducted. The analysis result shows that the proposed new forms of the Tensegrity domes are reasonable for practical applications.

Chaotic response of a double pendulum subjected to follower force (종동력을 받는 진동계의 케이오틱 거동 연구)

  • 이재영;장안배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.295-300
    • /
    • 1996
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower force are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant and periodic follower forces are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, phase portraits, and Poincare maps, etc.. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, and viscous damping, etc. is analysed. The strange attractors in Poincare map have the self-similar fractal geometry. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

Relativistic Effects on Orbital Energies in AgH and AuH ; A Clue to the Origin of Relativistic Correlation Effects

  • Lee, Yoon-Sup;McLean, A. D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.122-126
    • /
    • 1987
  • Oribtal energies for AuH and AgH are calculated by an all-electron relativistic self-consistent-field method using Slater type basis functions. Major relativistic effects for AgH are spin-orbit splittings and those for AuH are large shifts in orbital energies in addition to spin-orbit splittings. Relativistic effects on orbital energies in AgH and AuH imply that changes in correlation energies for relativistic calculations of AuH will be significantly larger than those of AgH, providing partial explanation for the large discrepencies in equilibrium bond length and the dissociation energy between experiments and theoretical estimates for AuH. Large relativistic effects on orbital energies indicate that relativistic contributions should be included for the correct interpretation of ionization potentials for these molecules. Relativistic effects are also evident in dipole moments for these molecules.

SOLVING QUASIMONOTONE SPLIT VARIATIONAL INEQUALITY PROBLEM AND FIXED POINT PROBLEM IN HILBERT SPACES

  • D. O. Peter;A. A. Mebawondu;G. C. Ugwunnadi;P. Pillay;O. K. Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.205-235
    • /
    • 2023
  • In this paper, we introduce and study an iterative technique for solving quasimonotone split variational inequality problems and fixed point problem in the framework of real Hilbert spaces. Our proposed iterative technique is self adaptive, and easy to implement. We establish that the proposed iterative technique converges strongly to a minimum-norm solution of the problem and give some numerical illustrations in comparison with other methods in the literature to support our strong convergence result.

Self-Consciousness about Ageing and Accident Prevention of Aged Workers (중고령 근로자의 자각적 노화 인식과 산재예방 방안)

  • Lim, Hyeon-Kyo;Kim, Heon;Song, Jae-Chul;Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.84-91
    • /
    • 2009
  • It is well known that Korea has got in an aged-society, and the speed of ageing is remarkably fast that has never seen before in the world. In spite of that, government officers and managers who are in charge of industrial safety seldom have interest in ageing workers, and much less ageing workers for themselves in the industrial fields. In the meanwhile the number of injured aged workers keeps going on and even increasing. Therefore this research was carried out to investigate the characteristics of aged workers on one hand, and to grasp the self-consciousness level of industrial workers on the problem of ageing. Furthermore, to develop countermeasures, opinions and hopes of middle managers in small- and medium-sized enterprises who were in charge of industrial safety and health were collected also. Though the reply rate was not so high as expected, opinions of safety and health managers were somewhat appropriate. They replied that the most urgent counterplan for ageing would be improvements of work environments followed by work assignments based upon personal aptitude. On the other hand, the self-consciousness level of aged workers was lower than middle managers, and they mainly complained of surgical disorders such as musculoskeltal disorders including lower back pains. However, they did not seem to recognize they are getting lose their physical function in maintaining body equilibrium.

Quantum Transport Simulations of CNTFETs: Performance Assessment and Comparison Study with GNRFETs

  • Wang, Wei;Wang, Huan;Wang, Xueying;Li, Na;Zhu, Changru;Xiao, Guangran;Yang, Xiao;Zhang, Lu;Zhang, Ting
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.615-624
    • /
    • 2014
  • In this paper, we explore the electrical properties and high-frequency performance of carbon nanotube field-effect transistors (CNTFETs), based on the non-equilibrium Green's functions (NEGF) solved self - consistently with Poisson's equations. The calculated results show that CNTFETs exhibit superior performance compared with graphene nanoribbon field-effect transistors (GNRFETs), such as better control ability of the gate on the channel, higher drive current with lower subthreshold leakage current, and lower subthreshold-swing (SS). Due to larger band-structure-limited velocity in CNTFETs, ballistic CNTFETs present better high-frequency performance limit than that of Si MOSFETs. The parameter effects of CNTFETs are also investigated. In addition, to enhance the immunity against short - channel effects (SCE), hetero - material - gate CNTFETs (HMG-CNTFETs) have been proposed, and we present a detailed numerical simulation to analyze the performances of scaling down, and conclude that HMG-CNTFETs can meet the ITRS'10 requirements better than CNTs.

Resource Allocation in Spectrum Sharing ad-hoc Cognitive Radio Networks Based on Game Theory: An Overview

  • Abdul-Ghafoor, Omar B.;Ismail, Mahamod;Nordin, Rosdiadee;El-Saleh, Ayman Abd
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.2957-2986
    • /
    • 2013
  • The traditional approach of fixed spectrum allocation to licensed networks has resulted in spectrum underutilisation. Cognitive radio technology is envisioned as a promising solution that can be used to resolve the ineffectiveness of the fixed spectrum allocation policy by accessing the underutilised spectrum of existing technologies opportunistically. The implementation of cognitive radio networks (CRNs) faces distinct challenges due to the fact that two systems (i.e., cognitive radio (CR) and primary users (PUs)) with conflicting interests interact with each other. Specially, in self-organised systems such as ad-hoc CRNs (AHCRNs), the coordination of spectrum access introduces challenges to researchers due to rapid utilisation changes in the available spectrum, as well as the multi-hop nature of ad-hoc networks, which creates additional challenges in the analysis of resource allocation (e.g., power control, channel and rate allocation). Instead, game theory has been adopted as a powerful mathematical tool in analysing and modelling the interaction processes of AHCRNs. In this survey, we first review the most fundamental concepts and architectures of CRNs and AHCRNs. We then introduce the concepts of game theory, utility function, Nash equilibrium and pricing techniques. Finally, we survey the recent literature on the game theoretic analysis of AHCRNs, highlighting its applicability to the physical layer PHY, the MAC layer and the network layer.