• Title/Summary/Keyword: self calibration

Search Result 186, Processing Time 0.034 seconds

New Calibration Methods for improving the Accuracy of AFM (원자간력 현미경의 자율교정법)

  • Kweon, Hyun-Kyu;Go, Young-Chae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.48-52
    • /
    • 2001
  • In this paper presents an accurate AFM used that is free from the Z-directional distortion of a servo actuator is described. Two mathematical correction methods by the in-situ self-calibrationare employed in this AFM. One is the method by the integration, and the other is the method by inverse function of the calibration curve. The in situ self-calibration method by the integration, the derivative of the calibration curve function of the PZT actuator is calculated from the profile measurement data sets which are obtained by repeating measurements after a small Z-directional shift. Input displacement at each sampling point is approximately estimated first by using a straight calibration line. The derivative is integrated with reference to the approximate input to obtain the approximate calibration curve. Then the approximation of the input value of each sampling point is improved using the obtained calibration curve. Next the integral of the derivative is improved using the newly estimated input values. As a result of repeating these improving process, the calibration curve converges to the correct one, and the distortion of the AFM image can be corrected. In the in situ self-calibration through evaluating the inverse function of the calibration curve, the profile measurement data sets were used during the data processing technique. Principles and experimental results of the two methods are presented.

  • PDF

Self-Calibration With Fixed Intrinsic Camera Parameters (고정된 카메라 내부 속성을 가정한 Self-Calibration)

  • Ahn, Ho-Young;Park, Jong-Seong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.779-782
    • /
    • 2010
  • Self-calibration에서 3차원 좌표의 복원은 호모그래피 행렬 H를 계산하면 얻을 수 있다. 이 호모그래피 행렬을 얻는 방법은 dual absolute quadric, Kruppa Equation(dual conic), plane at infinity(modulus constraint)를 사용하는 방법과 같이 세 가지 방법이 일반적으로 사용된다. 제안하는 방식은 dual absolute quadric을 사용한다. 카메라 내부 속성이 모든 뷰에서 동일하고 비틀림이나 영상의 원점이 중심이라는 가정을 두고 호모그래피 행렬 H를 계산한다. 실험을 통해서 주어진 가정으로 정밀한 복원이 가능함을 보였다.

Filter Calibration using Self Oscillation of Biquad RC Filter (바이쿼드 RC 필터의 자가 발진을 이용한 필터 교정)

  • Ahn, Deok-Ki;Hwang, In-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.1005-1009
    • /
    • 2010
  • This paper presents a digitally-controlled filter calibration technique for biquad RC filter using self oscillation. The biquad RC filter is converted to a fully-differential ring oscillator by changing its resistor connections, where the oscillation frequency reflects the cut-off frequency. The proposed calibration circuit measures the oscillation frequency by counting with a fixed higher-frequency clock and then tunes it to a desired frequency with a digital frequency-locked loop including a PI controller. Because the proposed circuit directly measures the cut-off frequency of the filter itself and calibrates it with the small area digital circuits, the area and the power consumption are much small compared with conventional works. When it is implemented in a 65nm CMOS process, the calibration circuit except the filter consumes the area of 80um X 50um and power consumption is 443uA at 1.2 V supply voltage.

Error propagation in 2-D self-calibration algorithm (2차원 자가 보정 알고리즘에서의 불확도 전파)

  • 유승봉;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.434-437
    • /
    • 2003
  • Evaluation or the patterning accuracy of e-beam lithography machines requires a high precision inspection system that is capable of measuring the true xy-locations of fiducial marks generated by the e-beam machine under test. Fiducial marks are fabricated on a single photo mask over the entire working area in the form of equally spaced two-dimensional grids. In performing the evaluation, the principles of self-calibration enable to determine the deviations of fiducial marks from their nominal xy-locations precisely, not being affected by the motion errors of the inspection system itself. It is. however, the fact that only repeatable motion errors can be eliminated, while random motion errors encountered in probing the locations of fiducial marks are not removed. Even worse, a random error occurring from the measurement of a single mark propagates and affects in determining locations of other marks, which phenomenon in fact limits the ultimate calibration accuracy of e-beam machines. In this paper, we describe an uncertainty analysis that has been made to investigate how random errors affect the final result of self-calibration of e-beam machines when one uses an optical inspection system equipped with high-resolution microscope objectives and a precision xy-stages. The guide of uncertainty analysis recommended by the International Organization for Standardization is faithfully followed along with necessary sensitivity analysis. The uncertainty analysis reveals that among the dominant components of the patterning accuracy of e-beam lithography, the rotationally symmetrical component is most significantly affected by random errors, whose propagation becomes more severe in a cascading manner as the number of fiducial marks increases

  • PDF

Wireless Networked System for Transmission Path Self-Calibration of Laser Equipment (레이저 장비의 전송 경로 자가 교정을 위한 무선 네트워크 시스템)

  • Lee, Junyoung;Yoo, Seong-eun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.2
    • /
    • pp.79-85
    • /
    • 2020
  • IIoT stands for Industrial Internet of Things used in manufacturing, healthcare, and transportation in networked smart factories. Recently, IIoT's environment requires an automated control system through intelligent cognition to improve efficiency. In particular, IIoT can be applied to automatic calibration of production equipment for improved management in industrial environments. Such automation systems require a wireless network for transmitting industrial data. Self-calibration systems in laser transmission paths using wireless networks can save resources and improve production quality by real-time monitoring and remote control of laser transmission path. In this paper, we propose a wireless networked system for self-calibration of laser equipment that requires a laser transmission path, and we show the results of the prototype evaluation. The self-calibration system of laser equipment measures the coordinates of the laser points with sensors and sends them to the host using the proposed application protocol. We propose a wireless network service for the wired motor controller to align the laser coordinates. Using this wireless network, the host controls the motor by sending a control command of the motor controller in an HTTP message based on the received coordinate values. Finally, we build a prototype system of the proposed design to verify the detection performance and analyze the network performance.

Calibration of Thermistors for Precision Temperature Measurements (정밀온도측정을 위한 서미스터 교정)

  • Gam, Kee-Sool;Kim, Yong-Gyoo;Yang, In-Seok
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.329-335
    • /
    • 2011
  • We demonstrated that high-stability thermistors can be calibrated with an uncertainty less than 1 mK, if the error due to the heat conduction is minimized. We first investigated the effect of the self-heating of typical thermistor probes to see how accurate we need to determine the effect of self-heating. We, then, calibrated thermistors and fitted the results using various modeling equations. We found out that the heat conduction is an important factor in achieving the calibration uncertainty under 1 mK for thermistors when the diameter of the probe is as thick as 10 mm. Therefore, we controlled the room temperature within $0.5^{\circ}C$ to minimize the heat conduction error during the calibration. The calibration with an uncertainty below 1 mK was possible when the stabilization time for each calibration was long enough to obtain a good thermal equilibrium.

A Photogrammetric Network and Object Field Design for Efficient Self-Calibration of Non-metric Digital Cameras (비측정용 디지털 카메라의 효율적인 자체 검정을 위한 대상지 구성)

  • Oh Jae-Hong;Eo Yang-Dam;Lee Chang-No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.3
    • /
    • pp.281-288
    • /
    • 2006
  • Recent increase in the number of pixels of a non-metric digital camera encourages to use it for close-range photogrammetry such as modeling cultural asset and buildings. However, these cameras have to be calibrated far close-range photogrammetry application. For self-calibration, an appropriate pbotograrnmetric network and object field should be designed. In this paper, we studied the effect on self-calibration accuracy changes according to the change of the number of ground control points, dimensions of the ground control points, and the combination of images. We concluded that self-calibration with three photos including a vertical photo can give the stable accuracy of interior orientation parameters and 10 ground control points on a plane can give high accuracy for object reconstruction.

Self-Calibration of High Frequency Errors of Test Optics by Arbitrary N-step Rotation

  • Kim, Seung-Woo;Rhee, Hyug-Gyo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.115-123
    • /
    • 2000
  • We propose an extended version of multi-step algorithm of self-calibration of interferometric optical testing instruments. The key idea is to take wavefront measurements with near equal steps in that a slight angular offset is intentionally provided in part rotation. This generalized algorithm adopts least squares technique to determine the true azimuthal positions of part rotation and consequently eliminates calibration errors caused by rotation inaccuracy. In addition, the required numbers of part rotation is greatly reduced when higher order spatial frequency terms are of particular importance.

  • PDF

Retardance Measurements Using Rotating Sample and Compensator Spectroscopic Ellipsometry

  • 경재선;방경윤;오혜근;안일신
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.169-173
    • /
    • 2004
  • Rotating Compensator Ellipsometry에 회전하는 시편 홀더를 갖추었을 때 uniaxial한 시편의 광축과 retardance를 측정하는 것이 매우 간단해진다. 이것은 Dual Rotating Compensator Transmission Ellipsometry의 self-calibration과정과 흡사하기 때문이다. 기존의 ellipsometry가 광학 부품들의 입사면에 대한 방위각을 찾는 복잡한 calibration과정과 비등방성 시편의 고속축의 방향을 찾아야 하는 수고를 필요로 하지만 rotating sample and compensator ellipsometry는 self-calibration과 자동으로 고속축의 방향을 찾기 때문에 매우 편리하다. 우리는 이 기술를 정렬된 액정display panel에 적용하여 ~$0.4^{\circ}$ 의 작은 retardance 간을 측정할 수 있었다.

  • PDF