제34회 한국정보처리학회 추계학술대회 논문집 제17권 2호 (2010. 11)

고정된 카메라 내부 속성을 가정한 Self-Calibration

안호영, 박종승 인천대학교 컴퓨터공학부

e-mail: tetronecl@incheon.ac.kr

Self-Calibration With Fixed Intrinsic Camera Parameters

Ho-Young Ahn, Jong-Seong Park Dept. of Computer Science and Engineering, University of Incheon

요 약

Self-calibration에서 3차원 좌표의 복원은 호모그래피 행렬 H를 계산하면 얻을 수 있다. 이 호모그래 피 행렬을 얻는 방법은 dual absolute quadric, Kruppa Equation(dual conic), plane at infinity (modulus constraint)를 사용하는 방법과 같이 세 가지 방법이 일반적으로 사용된다. 제안하는 방식은 dual absolute quadric을 사용한다. 카메라 내부 속성이 모든 뷰에서 동일하고 비틀림이나 영상의 원점 이 중심이라는 가정을 두고 호모그래피 행렬 H를 계산한다. 실험을 통해서 주어진 가정으로 정밀한 복원이 가능함을 보였다.

1. 서론

기존의 3차원 환경 구성은 해당 지형이나 건물에 대한 지형 맵이나 모델링을 기본적으로 필요로 한다. 3차원 가 시화를 위해서 많은 시간과 비용을 데이터 구축에 투자하 여야 했다. 현실 세계를 가상현실로 표현하기 위해서도 이 런 작업은 필수적인 부분이다.

최근에는 현실 세계에서 얻은 영상 정보를 바탕으로 3 차원 데이터를 획득하는 연구가 진행되고 있다. 점차 데이 터 구축에 대한 노력 없는 현실세계의 3차원 가시화가 현 실화되고 있다. 본 논문에서는 카메라 내부 속성을 제약하 여 영상좌표로부터 3차원 좌표를 획득하는 이론과 계산에 있어서의 정확성에 대해서 서술한다.

2. 기존의 연구

2.1. 3차원 복원을 위한 처리 과정

3차원 복원을 위한 단계는 다음과 같이 몇 가지의 순 차적인 단계로 이루어진다.

1) 몇 장의 영상 데이터로부터 특징점 추출 및 특징점
 매칭을 통하여 영상 일치점 좌표들을 얻기

 2) 매칭된 2차원 데이터로부터 사영복원(projective reconstruction)의 투사행렬(projection matrix) 및 매칭된 점
 의 3차원 좌표 구하기

3) 사영복원의 투사행렬로부터 메트릭복원(metric reconstruction)의 투사행렬을 얻고 매칭된 점의 3차원 좌표 를 얻는 self-calibration 수행하기

메트릭복원으로 얻어진 3차원 좌표는 3차원 환경에서 가시화할 수 있다.

2.2. Self-calibration

3차원 복원 과정에서 세 번째 단계인 메트릭 공간 (metric space)의 3차원 좌표를 얻는 과정을 self-calibration이라고 한다[1]. 이 단계에서는 사영복원 결과인 $\{P_P^i, X_j\}$ 이 입력 값이다. P_P^i 는 얻어진 사영복원의 투사행 렬이고 X_i 는 복원된 점의 3차원 좌표이다. i는 프레임 번 호이고, j는 점의 번호이다.

모든 P_P^i 에 대해서 메트릭복원의 투사행렬로 변환할 수 있는 행렬인 호모그래피(homography) H가 존재한다 [1][9]. $\{P_P^iH, H^{-1}X_j\}$ 는 얻으려고 하는 메트릭복원에서의 투사행렬과 점의 3차원 좌표이다. 이를 얻기 위해서 먼저 호모그래피 행렬 H를 얻어야 한다. 메트릭복원에서의 투 사행렬을 식 (1)로 표현할 수 있다.

$$P_{M}^{i} = P_{P}^{i}H \quad (i = 1, ..., m)$$
(1)

 π_{∞} (plane at infinity)는 $\pi_{\infty} = (p^T, 1)^T$ 이고 호모그래피 행렬 *H*는 식 (2)로 정의할 수 있다.

$$H = \begin{pmatrix} K & 0 \\ -p^T K & 1 \end{pmatrix}$$
(2)

그러므로 K와 π_{∞} 을 알면 식 (2)로부터 호모그래피 행렬 H를 구할 수 있다.

[※] 이 논문은 2010년도 정부(교육과학기술부)의 재원으로 한국연구재단의 지 원을 받아 수행된 기초연구사업임(No. 2010-0010950)

2.3. 호모그래피 행렬 H계산하기

사영복원의 투사행렬을 메트릭복원의 투사행렬로 변환 하기 위해서는 호모그래피 행렬 *H*의 계산은 필수적이다. 이를 위해서는 π_∞(plane at infinity)와 *K*(intrinsic parameter)가 필요하다. 이를 위해서는 일반적으로 세 가지 방식 중의 하나가 사용된다.

- 1) Dual absolute quadric의 계산
- 2) Kruppa equation을 이용한 연산(dual conic)
- 3) Plane at infinity의 계산

위의 세 가지 값 중의 한 값을 계산하면 호모그래피 행렬 *H*을 얻기 위한 π_∞와 *K*을 얻을 수 있다.

(1) Kruppa equation을 이용한 계산(dual conic)

Fundamental matrix는 SVD(singular value decomposition)을 이용해서 식 (3)과 같이 분해될 수 있다.

$$F = UDV^{T} = Udiag(\sigma_{1}, \sigma_{2}, 0) V^{T}$$
(3)

u_i가 *U*의 *i*번째 열벡터이고 v_i가 *V*의 *i*번째 열벡터라고 하면 식 (4)를 만족한다[2][3][4].

$$\frac{u_2^T \omega^{*'} u_2}{\sigma_1^2 v_1^T \omega^{*} v_1} = -\frac{u_1^T \omega^{*'} u_2}{\sigma_1 \sigma_2 v_1^T \omega^{*} v_2} = \frac{u_1^T \omega^{*'} u_1}{\sigma_2^2 v_2^T \omega^{*} v_2}$$
(4)

 w^* 를 모든 카메라에서 동일하다고 하면 두 개의 수식을 얻을 수 있고 미지수는 5개를 가진다. Fundamental matrix를 3개 얻을 수 있다면 2차 방정식을 풀어서 해를 얻 을 수 있다. $P_p^+ P_p = I_{\rm e}^{\rm e}$ 만족하는 $P_p^{\rm e}$ pseudo-inverse인 $P_p^+ (P_p^+ = (P_p^T P_p)^{-1} P_p^T)$ 를 정의하면 식 (5)를 얻는다.

$$P_P Q_{\infty}^* P_P^T = \omega^*$$

$$Q_{\infty}^* = P_P^+ \omega^* (P_P^+)^T$$
(5)

식 (5)를 통해서 Q_{∞}^* 을 구할 수 있고 $p = -(\omega^*)^{-1}(-\omega^* p)$ 연산으로 π_{∞} 를 구할 수 있다. 또한 *K*는 Cholesky factorization을 사용하여 구한다.

2차 방정식을 푸는 과정은 복잡한 과정을 거친다. 영상 의 중심이 원점이고 비틀림도 없으며 가로세로 비율도 같 다고 가정하면 ω^{*} = diag(α²,α²,1)라고 가정할 수 있다. 이 는 미지수 1개의 연산으로 처리할 수 있다.

(2) Plane at infinity를 이용한 계산(modulus constraint)

$$P = [A|a] 로 나타내고 \pi_{\infty} = (p^{T}, 1)^{T} 로 나타내고 모든 i$$

에 대해서 $K^{i} = K$ 라고 할 때 식 (6)으로 나타낼 수 있다.
 $A - ap^{T} = u K R K^{-1}$ (6)

 KRK^{-1} 은 고유값(eigen value)으로 $\{1, e^{i\theta}, e^{-i\theta}\}$ 을 갖는다. 그러므로 $A - ap^T$ 는 고유값으로 $\{\mu, \mu e^{i\theta}, \mu e^{-i\theta}\}$ 을 갖는다. M에 대한 고유값의 정의는 $det(M - \lambda I) = 0$ 이 되는 λ 의 값이다.

$$det(A - ap^{T} - \lambda I) = f_{4}(\lambda - \lambda_{1})(\lambda - \lambda_{2})(\lambda - \lambda_{3})$$
(7)
$$= f_{4}\lambda^{3} + f_{3}\lambda^{2} + f_{2}\lambda + f_{1}$$

식 (7)의 $\lambda_1, \lambda_2, \lambda_3$ 로 $\{\mu, \mu e^{i\theta}, \mu e^{-i\theta}\}$ 를 갖는다는 의미이므

$$\begin{split} f_3/f_4 &= \lambda_1 + \lambda_2 + \lambda_3 = -\mu(1 + 2\cos\theta) \\ f_2/f_4 &= \lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1 = \mu^2(1 + 2\cos\theta) \\ f_1/f_4 &= \lambda_1\lambda_2\lambda_3 = -\mu^3 \end{split} \tag{8}$$

식 (8)로부터 식 (9)를 만족함을 알 수 있다[5][6][7]. $f_1f_3^3 = f_2^3f_4$

 $\det(A - ap^T - \lambda I)$ 는 미지수 λ, p 를 가지고 f_i , (i = 1, ...4)는 p_i , (i = 1, ..., 3)에 대한 연립 4차 다항식이다. 미지수가 3개 이므로 결과를 얻기 위해서는 최소한 3개의 뷰를 얻어야 한다. 연립 다항식은 Levenberg-Marquardt algorithm을 사용하면 계산할 수 있다[8][3].

 π_{∞} 를 이용해서 ω^* 를 계산한다. π_{∞} 를 알면 식 (10)에 대입하여 H_{∞} 을 얻을 수 있다.

$$H_{\infty}^{i} = (A^{i} - a^{i}p^{T})(A^{1} - a^{1}p^{T})^{-1}$$
(10)

ω^{*}와 Hⁱ_∞는 식 (11)을 만족한다[5].

$$w^* = H^i_{\infty} \,\omega^* H^{*T}_{\infty} \tag{11}$$

(9)

h_{jk}를 H_∞의 j(j=1,...,3) 행 k(k=1,...,3) 열의 값이라고 하
고 ω^{*}_{jk}을 ω^{*}의 j(j=1,...,3) 행 k(k=1,...,3) 열의 값이라고
할 때 식 (11)을 이용해서 식 (12)를 얻을 수 있다.

$$\sum_{m=1}^{3} \sum_{n=1}^{3} (h_{jm} h_{kn} \omega_{mn} - \omega_{jk}) = 0$$

$$\sum_{m=1}^{3} \sum_{n=1}^{3} ((h_{jm} h_{kn} - s) \omega_{mn}) = 0, \ s = \begin{cases} 1, \ j = m \ AND \ k = n \\ 0, \ else \end{cases}$$
(12)

 ω^* 은 3x3의 대칭 행렬(symmetric matrix)이므로 6개의 미 지수를 갖는다. 9개의 수식이 주어지므로 Ac=0의 형태로 바꾸어 널 벡터(null vector)를 계산해서 ω^* 를 얻을 수 있 다. *K*는 Cholesky factorization을 사용하여 구한다.

3. Self-Calibration

3.1. 제안하는 방식

모든 K_i 가 K로 동일하다고 했을 때 식 (13)을 만족한 다(부록 참조). 여기서 Q^*_{∞} 는 식 (14)과 같다.

$$\omega^* = P_P Q_\infty^* P_P^T \tag{13}$$

$$Q_{\infty}^{*} = H\hat{I}H^{T} = \begin{pmatrix} KK^{T} & -KK^{T}p \\ -p^{T}KK^{T} & p^{T}KK^{T}p \end{pmatrix}$$

$$= \begin{pmatrix} \omega^{*} & -\omega^{*}p \\ -p^{T}\omega^{*} & p^{T}\omega^{*}p \end{pmatrix}$$
(14)

 $\boldsymbol{Q}_{\!\!\infty}^{*}$ 을 얻으면 $\boldsymbol{\omega}^{*}$ 과 $\boldsymbol{\pi}_{\!\!\infty}=(\boldsymbol{p}^{T}\!,\!1)^{T}\!$ 을 얻을 수 있다.

$$K = \begin{pmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{pmatrix}$$
(15)

K는 식 (15)로 표현할 수 있고 $\omega_{\infty}^{*} = KK^{T}$ 이므로 식 (16) 을 만족한다.

$$\omega^* = \begin{pmatrix} \alpha_x^2 + s^2 + x_0^2 & s\alpha_y + x_0y_0 & x_0 \\ s\alpha_y + x_0y_0 & \alpha_y^2 + y_0^2 & y_0 \\ x_0 & y_0 & 1 \end{pmatrix}$$
(16)

이는 영상의 중심이 원점($x_0 = y_0 = 0$)이라면 $\omega_{13}^* = \omega_{23}^* = 0$ 임을 의미한다. 또한 비틀림(s)도 없다면 $\omega_{12}^* = 0$ 을 만족 한다. 그리고 가로세로의 비율($r = \alpha_y/\alpha_x$)이 알고 있는 값 이라면 $r^2\omega_{11}^* = \omega_{22}^*(r^2\omega_{11}^* - \omega_{22}^* = 0)$ 을 만족한다. 해당 조건 이 만족된다면 식 (13)으로부터 모든 프레임 번호 *i*에 대 해서 식 (17)을 만족한다[10].

$$\begin{aligned} & (P_P^i Q_{\infty}^* P_P^{iT})_{13} = 0 \\ & (P_P^i Q_{\infty}^* P_P^{iT})_{23} = 0 \\ & (P_P^i Q_{\infty}^* P_P^{iT})_{12} = 0 \\ & (r^2 P_P^i Q_{\infty}^* P_P^{iT})_{11} - (P_P^i Q_{\infty}^* P_P^{iT})_{22} = 0 \end{aligned}$$

 P_P 의 j번째 행을 $P_{P(j)}$ 라고 정의한다면 식 (18)을 만족한 다.

$$(P_P^i Q_{\infty}^* P_P^{iT})_{jk} = (P_{P(j)}^i Q_{\infty}^* P_{P(k)}^{iT})$$
(18)

 p_{jm} 이 P_P 의 j행 m열의 값이라고 하고 q_{mn} 이 Q_{∞}^* 의 m행n열의 값이라고 하면 $(P_{P(j)}Q_{\infty}^*P_{P(k)}^T) = 0$ 은 식 (19)를 의 미한다.

$$\sum_{m=1}^{4} \sum_{n=1}^{4} (p_{jm} p_{kn} q_{mn}) = 0$$
(19)

또한 동일하게 식 (20)을 만족하고 식 (21)을 의미한다.

$$(r^{2}P_{P}^{i}Q_{\infty}^{*}P_{P}^{iT})_{jj} - (P_{P}^{i}Q_{\infty}^{*}P_{P}^{iT})_{kk} = 0$$

$$(r^{2}P_{P(j)}^{i}Q_{\infty}^{*}P_{P(j)}^{iT}) - (P_{P(k)}^{i}Q_{\infty}^{*}P_{P(k)}^{iT}) = 0$$

$$\sum_{m=1}^{4} \sum_{n=1}^{4} [(r^{2}p_{jm}p_{jn} - p_{km}p_{kn})q_{mn}] = 0$$

$$(21)$$

 Q_{∞}^{*} 는 대칭 행렬(symmetric matrix)이고 이는 미지수 인 Q_{∞}^{*} 의 값이 16개가 아닌 10개임을 의미한다. 대각 요 소는 4개이고 나머지 12개는 중복되므로 6개이다. 한 개의 투영 행렬을 갖는 각 영상마다 4개의 식을 얻을 수 있으 므로 3개 이상의 영상을 갖는다면 미지수 10개보다 더 많 은 식을 가진다. Aq=0의 형태로 바꾸어서 널 벡터(null vector)를 구하면 Q_{∞}^{*} 를 얻을 수 있다. Q_{∞}^{*} 는 호모그래피 행렬이다. 그렇기 때문에 구해지는 Q_{∞}^{*} 는 희망하는 값과 는 다른 scale값을 갖는다. $Q_{\infty33}^{*}=1$ 을 이용해서 scale을 바꾼다. 또한 $Rank Q_{\infty}^{*}=3$ 이기 때문에 rank constraint enforcement를 적용한다. 즉 SVD를 사용하여 det $(Q_{\infty}^{*})=0$ 이 되도록 하여 더 정확한 Q_{∞}^{*} 을 얻는다.

식 (14)에서와 같이 Q_{∞}^* 의 좌측 상단 3x3 행렬이 ω^* 이 다. $p = -(\omega^*)^{-1}(-\omega^* p)$ 연산으로 π_{∞} 를 구할 수 있다. K는 Cholesky factorization을 사용하여 구한다.

3.2. 입력 데이터의 제약 조건

Self-calibration은 일반적인 사영복원에 대해서는 구할 수 없다. 연산을 위해서 제약 조건이 존재한다. P_M 과 P_P 간에는 식 (22)를 만족한다.

$$P_{M} = K[R^{i} | t^{i}] = P^{i}H = [A^{i} | a^{i}]H = [A^{i} | a^{i}] \begin{pmatrix} K & 0 \\ -p^{T}K & 1 \end{pmatrix}$$
(22)

식 (22)를 정리하면 식 (23)을 얻을 수 있다.

$$\begin{bmatrix} A^{i} | a^{i} \end{bmatrix} = K[R^{i} | t^{i}]H^{-1} = K[R^{i} | t^{i}] \begin{pmatrix} K^{T} & 0 \\ p^{T} & 1 \end{pmatrix}$$
(23)
$$= K[R^{i}K^{-1} + t^{i}p^{T} | t^{i}]$$

$$= [KR^{i}K^{-1} + K^{i}p^{T} | K^{i}]$$

따라서 식 (23)으로부터 식 (24)와 식 (25)를 얻는다.

$$a^{i} = Kt^{i}$$
 (24)
 $A^{i} = KR^{i}K^{-1} + Kt^{i}p^{T} = KR^{i}K^{-1} + a^{i}p^{T}$ (25)

식 (24)와 식 (25)에서 A^i 와 a^i 는 주어진 알려진 값이고 K, p, R^i , t^i 는 주어지지 않은 미지의 값이다.

3.3. 호모그래피 행렬 H를 구하기 위한 연산 순서

호모그래피 행렬 H를 구하기 위한 절차는 3가지 방식 이 모두 다르다. <표 1>은 각 방식에서 H를 얻는 순차적 인 과정을 가시적으로 표현한 것이다.

<표 1> 각각의 방식에 따른 연산 과정

제안하는 방식	Q^*_{∞} — ω^* — π_{∞} —	
kruppa equation	$\omega^* - Q_{\infty}^* - \pi_{\infty} - K - K$	I
plane at infinity	$\pi_{\infty} - H^i_{\infty} - \omega^* -$	

4. 실험

실험에서 사용된 입력 데이터는 사영복원을 만족하는 여러 개의 P_p 이고 결과 값은 여러 개의 P_M 이다. 미지수 K, p, R^i, t^i 를 임의로 입력하여 입력 데이터 $P_p^i = [A^i| a^i]$ 를 생성하였다. 단 K의 비틀림과 영상의 중심은 0으로 정 하였다.

* Input(P_P):

$P_P^1 = \begin{bmatrix} 1.00\ 0.00\ 0.00\ 0.00\\ 0.00\ 1.00\ 0.00\ 0.00\\ 0.00\ 0.00\ 1.00\ 0.00 \end{bmatrix}, P_P^2 = \begin{bmatrix} 48.39\ 50.00\ 70.09\ 12.0\\ 28.07\ 28.61\ 42.76\ 7.00\\ 16.30\ 15.58\ 24.10\ 4.00 \end{bmatrix},$		
$P_P^3 = \begin{bmatrix} 60.91 & 60.79 & 89.07 & 15.00 \\ 11.92 & 12.96 & 18.10 & 3.00 \\ 12.11 & 11.99 & 18.95 & 3.00 \end{bmatrix}$		
* $\text{Output}(P_M)$:		
$P_{M}^{1} = \begin{bmatrix} 3.00 \ 0.00 \ 0.00 \ 0.00 \ 0.00 \\ 0.00 \ 1.00 \ 0.00 \ 0.00 \end{bmatrix}, P_{M}^{2} = \begin{bmatrix} 1.16 \ 2.00 \ -1.91 \ 12.00 \\ 0.20 \ 0.61 \ 0.76 \ 7.00 \\ 0.90 \ -0.42 \ 0.10 \ 4.00 \end{bmatrix},$		
$P_M^3 = \begin{bmatrix} 2.74 & 0.79 & -0.93 & 15.00 \\ -0.24 & 0.96 & 0.10 & 3.00 \\ 0.32 & -0.01 & 0.95 & 3.00 \end{bmatrix}$		
* Homography(<i>H</i>):		
$H^{=} \begin{bmatrix} 3.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 1.00 & 0.00 \\ -12.00 - 4.00 - 6.00 & 1.00 \end{bmatrix}$		
* ErrorRate: 0.00		
<그림 1> 사영복원 투사행렬의 메트릭복원 투사행렬로		

입력되는 P_P^i 로부터 dual quadric을 통해서 P_M^i 을 구하였 다.

$$P_M^i = K[R^i| t^i] \tag{26}$$

식 (26)에서 R^i 가 회전 행렬의 성질을 적합하게 만족하는 정도를 오차(error rate)로 계산하였다. 입력된 사영복원 투사행렬들과 출력된 메트릭복원 투사행렬들이 <그림 1> 에 있다.

해당 조건을 만족하는 여러 사영복원에 대해서 반복수 행하여도 얻어진 출력에 대한 오차는 0.0으로 오차가 발생 하지 않음을 보였다.

5. 결론

카메라 내부 속성을 제약하여 적합한 메트릭복원을 계 산할 수 있는 self-calibration 기법을 구현할 수 있었다. 그러나 self-calibration이 정상적으로 동작하는지를 확인 하기 위해서는 입력된 사영복원 투사행렬들이 적합한 형 태로 입력되어야 한다. 이번 실험에서는 임의의 *K*, *p*, *Rⁱ*, *tⁱ*를 입력하여 *Pⁱ*=[*Aⁱ*|*aⁱ*]를 얻었다. 향후 과제로 입력된 *Pⁱ*=[*Aⁱ*|*aⁱ*]만을 가지고 self-calibration을 연산할 수 있는 데이터 형태인지의 적합성 여부를 판단할 수 있어야 함이 필요하다.

부록

Corollary: ω^* 와 Q_{∞}^* 간에는 $\omega^* = P_M Q_{\infty}^* P_M^T$ 뿐만 아니 라 $\omega^* = P_P Q_{\infty}^* P_P^T \Sigma$ 만족한다.

Proof: P_M^i 과 P_P^i 간에는

$$P_{M}^{i} = K^{i}[R^{i}|t^{i}] = P_{P}^{i}H = [A^{i}|a^{i}] \begin{pmatrix} K^{1} & 0\\ -p^{T}K^{1} & 1 \end{pmatrix}$$
(A.1)
$$[K^{i}R^{i}|K^{i}t^{i}] = [A^{i}K^{1} - a^{i}p^{T}K^{1}|a^{i}]$$

을 만족한다. 이 식의 일부로부터

$$K^{i}R^{i} = A^{i}K^{1} - a^{i}p^{T}K^{1}$$

$$= [A^{i} - a^{i}p^{T}]K^{1}$$
(A.2)

을 얻을 수 있고 전치행렬(transpose matrix)과의 곱으로 부터

$$K^{i}R^{i}[K^{i}R^{i}]^{T} = K^{i}R^{i}R^{iT}K^{iT}$$

$$= K^{i}R^{i}R^{i-1}K^{iT}$$

$$= K^{i}K^{iT}$$
(A.3)

$$K^{i}K^{iT} = [A^{i} - a^{i}p^{T}]K^{1}K^{1T}[A^{i} - a^{i}p^{T}]^{T}$$
(A.4)
을 얻는다.

$$\begin{aligned} Q_{\infty}^{*} &= \hat{HIH}^{T} = \begin{pmatrix} K^{1}K^{1T} & -K^{1}K^{1T}p \\ -p^{T}K^{1}K^{1T} & p^{T}K^{1}K^{1T}p \end{pmatrix} \tag{A.5} \\ P_{P}Q_{\infty}^{*}P_{P}^{T} &= \begin{pmatrix} A^{i} & a^{i} \end{pmatrix} \begin{pmatrix} K^{1}K^{1T} & -K^{1}K^{1T}p \\ -p^{T}K^{1}K^{1T} & p^{T}K^{1}K^{1T}p \end{pmatrix} (A^{i} a^{i})^{T} \\ &= \begin{bmatrix} A^{i} - a^{i}p^{T} \end{bmatrix} K^{1}K^{1T} \begin{bmatrix} A^{i} - a^{i}p^{T} \end{bmatrix}^{T} \\ \mathcal{A} (A.4) \ \mathcal{P} \ \mathcal{A} (A.5) \ \mathcal{E} \ \mathcal{H} \ \mathcal{H} \end{aligned}$$

$$K^i K^{iT} = P_P Q_\infty^* P_P^T \tag{A.6}$$

을 얻을 수 있고 모든 K^i 가 K로 동일하다고 가정하고 $\omega^* = KK^T$ 이므로

$$\omega^* = KK^T = P_P Q_{\infty}^* P_P^T \tag{A.7}$$

을 만족한다. Q.E.D.

참고문헌

[1] Richard Hartley and Andrew Zisserman, "Multiple view geometry," 2nd ed., Cambridge University Press, 2003.

[2] Richard I. Hartley, "Kruppa's equations derived from the fundamental matrix," IEEE T-PAMI, Vol. 19(2), pp. 133–135, 1997.

[3] Henri Gavin, "The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems," Duke University, pp. 1–15, July 2010.

[4] Peter Sturm, "A case against Kruppa's equations for camera self-calibration," IEEE T-PAMI, Vol. 22(1), pp. 1199–1204, 2000.

[5] Marc Pollefeys, Lun Van Gool and Andre Oosterlinck, "The modulus constraint: a new constraint for self-calibration," ICPR, pp. 349–353, 1996.

[6] Marc Pollefeys and Luc Van Gool, "A stratified approach to metric self-calibration," CVPR, pp. 407–412, 1997.

[7] Marc Pollefeys and Luc Van Gool, "Stratified self-calibration with the modulus constraint," IEEE T-PAMI, Vol. 21(8), pp. 707-724, 1999.

[8] Manolis I. A. Lourakis, "A brief description of the Levenberg–Marquardt algorithm implemented by levmar," Foundation for Research and Technology, pp. 1–5, 2005.

[9] Jan Hendrik de Vaal, "Metric reconstruction of multiple rigid objects," MS Thesis, Stellenbosch University, 2009.

[10] Marc Pollefeys, Reinhard Koch and Luc Van Gool, "Self-calibration and metric reconstruction in spite of varying and unknown intrinsic camera parameters," IJCV, Vol. 32(1), pp. 7–25, 1999.