• 제목/요약/키워드: seismic spectral analysis

검색결과 190건 처리시간 0.023초

Seismic hazard assessment for two cities in Eastern Iran

  • Farzampour, Alireza;Kamali-Asl, Arash
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.681-697
    • /
    • 2015
  • Iran as one of the countries located on the Alpine-Himalayan seismic belt has recently experienced a few number of catastrophic earthquakes. A well-known index of how buildings are affected by earthquakes is through assessment of probable Peak Ground Acceleration (PGA) and structures' response spectra. In this research, active faults around Kerman and Birjand, two major cities in eastern parts of Iran, have been considered. Seismic catalogues are gathered to categorize effects of surrounding faults on seismicity of the region. These catalogues were further refined with respect to time and space based on Knopoff-Gardner algorithm in order to increase statistical independency of events. Probabilistic Seismic Hazard Analysis (PSHA) has been estimated for each of cities regarding 50, 100, 200 and 500 years of structures' effective life-span. These results subsequently have been compared with Deterministic Seismic Hazard Analysis (DSHA). It has been observed that DSHA not necessarily suggests upper bound of PSHA results. Furthermore, based on spectral Ground Motion Prediction Equations (GMPEs), Uniform Hazard Spectra (UHS) and spectral acceleration were provided for 2% and 10% levels of probability of exceedance. The results show that increasing source-to-site distance leads to spectral acceleration reduction regarding each fault. In addition, the spectral acceleration rate of variation would increase if the source-to-site distance decreases.

Investigation on site conditions for seismic stations in Romania using H/V spectral ratio

  • Pavel, Florin;Vacareanu, Radu
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.983-997
    • /
    • 2015
  • This research evaluates the soil conditions for seismic stations situated in Romania using the horizontal-to-vertical spectral ratio (HVSR). The strong ground motion database assembled for this study consists of 179 analogue and digital strong ground motion recordings from four intermediate-depth Vrancea seismic events with $M_w{\geq}6.0$. In the first step of the analysis, the influence of the earthquake magnitude and source-to-site distance on the H/V curves is evaluated. Significant influences from both the earthquake magnitude and hypocentral distance are found especially for soil class A sites. Next, a site classification method proposed in the literature is applied for each seismic station and the soil classes are compared with those obtained from borehole data and from the topographic slope method. In addition, the success and error rates of this method are computed and compared with other studies from the literature. A more in-depth analysis of the H/V results is performed using data from seismic stations in Bucharest and a comparison of the free-field and borehole H/V curves is done for three seismic stations. The results show large differences between the free-field and the borehole curves. As a conclusion, the results from this study represent an intermediary step in the evaluation of the soil conditions for seismic stations in Romania and the need to perform more detailed soil classification analysis is highly emphasized.

Bayesian approach for the accuracy evaluating of the seismic demand estimation of SMRF

  • Ayoub Mehri Dehno;Hasan Aghabarati;Mehdi Mahdavi Adeli
    • Earthquakes and Structures
    • /
    • 제26권2호
    • /
    • pp.117-130
    • /
    • 2024
  • Probabilistic model of seismic demand is the main tool used for seismic demand estimation, which is a fundamental component of the new performance-based design method. This model seeks to mathematically relate the seismic demand parameter and the ground motion intensity measure. This study is intended to use Bayesian analysis to evaluate the accuracy of the seismic demand estimation of Steel moment resisting frames (SMRFs) through a completely Bayesian method in statistical calculations. In this study, two types of intensity measures (earthquake intensity-related indices such as magnitude and distance and intensity indices related to ground motion and spectral response including peak ground acceleration (PGA) and spectral acceleration (SA)) have been used to form the models. In addition, an extensive database consisting of sixty accelerograms was used for time-series analysis, and the target structures included five SMRFs of three, six, nine, twelve and fifteen stories. The results of this study showed that for low-rise frames, first mode spectral acceleration index is sufficient to accurately estimate demand. However, for high-rise frames, two parameters should be used to increase the accuracy. In addition, adding the product of the square of earthquake magnitude multiplied by distance to the model can significantly increase the accuracy of seismic demand estimation.

Evaluation of EC8 and TBEC design response spectra applied at a region in Turkey

  • Yusuf Guzel;Fidan Guzel
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.199-208
    • /
    • 2023
  • Seismic performance analysis is one of the fundamental steps in the design of new or retrofitting buildings. In the seismic performance analysis, the adapted spectral acceleration curve for a given site mainly governs the seismic behavior of buildings. Since every soil site (class) has a different impact on the spectral accelerations of input motions, different spectral acceleration curves have to be involved for every soil class that the building is located on top of. Modern seismic design codes (e.g., Eurocode 8, EC8, or Turkish Building Earthquake Code, TBEC) provide design response spectra for all the soil classes to be used in the building design or retrofitting. This research aims to evaluate the EC8 and TBEC based design response spectra using the spectra of real earthquake input motions that occurred (and were recorded at only soil classes A, B and C, no recording is available at soil class D) in a specific area in Turkey. It also conducts response spectrum analyses of 5, 10 and 13 floor reinforced concrete building models under EC8, TBEC and actual spectral response curves. The results indicate that the EC8 and especially TBEC given design response spectra cannot be able to represent the mean actual spectral acceleration curves at soil classes A, B and C. This is particularly observed at periods higher than 0.3 s, 0.42 s and 0.55 s for the TBEC design response spectra, 0.54 s, 0.65 s and 0.84 s for the EC8 design response spectra at soil classes A, B and C, respectively. This is also reflected to the shear forces of three building models, as actual spectral acceleration curves lead to the highest shear forces, followed by the shear forces obtained from EC8 and, then, the TBEC design response spectra.

Post-earthquake warning for Vrancea seismic source based on code spectral acceleration exceedance

  • Balan, Stefan F.;Tiganescu, Alexandru;Apostol, Bogdan F.;Danet, Anton
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.365-372
    • /
    • 2019
  • Post-earthquake crisis management is a key capability for a country to be able to recover after a major seismic event. Instrumental seismic data transmitted and processed in a very short time can contribute to better management of the emergency and can give insights on the earthquake's impact on a specific area. Romania is a country with a high seismic hazard, mostly due to the Vrancea intermediate-depth earthquakes. The elastic acceleration response spectrum of a seismic motion provides important information on the level of maximum acceleration the buildings were subjected to. Based on new data analysis and knowledge advancements, the acceleration elastic response spectrum for horizontal ground components recommended by the Romanian seismic codes has been evolving over the last six decades. This study aims to propose a framework for post-earthquake warning based on code spectrum exceedances. A comprehensive background analysis was undertaken using strong motion data from previous earthquakes corroborated with observational damage, to prove the method's applicability. Moreover, a case-study for two densely populated Romanian cities (Focsani and Bucharest) is presented, using data from a $5.5M_W$ earthquake (October 28, 2018) and considering the evolution of the three generations of code-based spectral levels for the two cities. Data recorded in free-field and in buildings were analyzed and has confirmed that no structural damage occurred within the two cities. For future strong seismic events, this tool can provide useful information on the effect of the earthquake on structures in the most exposed areas.

확률론적 지진계수 개발 (Development of Probabilistic Site Coefficient)

  • 곽동엽;정창균;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.707-714
    • /
    • 2009
  • The design response spectrum generally used in Korea is decided by the site coefficients determined by deterministic methodology, while it is based on probabilistic seismic hazard analysis. The design response spectrum has to be made using probabilistic method which includes uncertainties of ground motions and ground properties for coincide with probabilistic methodology of seismic hazard analysis. In this study probabilistic site coefficients were developed, which were defined by the results of site response analysis using a set of ground motion that was compatible with present seismic hazard map. The design response spectrum defined by probabilistic seismic coefficients resulted in lower spectrum in long period area and larger spectrum in short period area. Also, the maximum spectral accelerations in site class D and site class E were lower than one in site class C while in the previous design response spectrum the maximum spectral acceleration increased from site class A to E.

  • PDF

Reservoir Characterization using 3-D Seismic Data in BlackGold Oilsands Lease, Alberta Canada

  • Lim, Bo-Sung;Song, Hoon-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2009년도 특별 심포지엄
    • /
    • pp.35-45
    • /
    • 2009
  • Reservoir Characterization (RC) using 3-D seismic attributes analysis can provide properties of the oil sand reservoirs, beyond seismic resolution. For example, distributions and temporal bed thicknesses of reservoirs could be characterized by Spectral Decomposition (SD) and additional seismic attributes such as wavelet classification. To extract physical properties of the reservoirs, we applied 3-D seismic attributes analysis to the oil sand reservoirs in McMurray formation, in BlackGold Oilsands Lease, Alberta Canada. Because of high viscosity of the bitumen, Enhanced Oil Recovery (EOR) technology will be necessarily applied to produce the bitumen in a steam chamber generated by Steam Assisted Gravity Drainage (SAGD). To optimize the application of SAGD, it is critical to identify the distributions and thicknesses of the channel sand reservoirs and shale barriers in the promising areas. By 3-D seismic attributes analysis, we could understand the expected paleo-channel and characteristics of the reservoirs. However, further seismic analysis (e.g., elastic impedance inversion and AVO inversion) as well as geological interpretations are still required to improve the resolution and quality of RC.

  • PDF

지진파 스펙트럼특성과 선형판별분석을 이용한 자연지진과 인공지진 식별 (Discrimination between earthquake and explosion by using seismic spectral characteristics and linear discriminant analysis)

  • 제일영;전정수;이희일
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.13-19
    • /
    • 2003
  • Discriminant method using seismic signal was studied for discrimination of surface explosion. By means of the seismic spectral characteristics, multi-variate discriminant analysis was performed. Four single discriminant techniques - Pg/Lg, Lg1/Lg2, Pg1/Pg2, and Rg/Lg - based on seismic source theory were applied to explosion and earthquake training data sets. The Pg/Lg discriminant technique was most effective among the four techniques. Nevertheless, it could not perfectly discriminate the samples of the training data sets. In this study, a compound linear discriminant analysis was defined by using common characteristics of the training data sets for the single discriminants. The compound linear discriminant analysis was used for the single discriminant as an independent variable. From this analysis, all the samples of the training data sets were correctly discriminated, and the probability of misclassification was lowered to 0.7%.

  • PDF

Evaluating the effective spectral seismic amplification factor on a probabilistic basis

  • Makarios, Triantafyllos K.
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.121-129
    • /
    • 2012
  • All contemporary seismic Codes have adopted smooth design acceleration response spectra, which have derived by statistical analysis of many elastic response spectra of natural accelerograms. The above smooth design spectra are characterized by two main branches, an horizontal branch that is 2.5 times higher than the peak ground acceleration, and a declining parabolic branch. According to Eurocode EN/1998, the period range of the horizontal, flat branch is extended from 0.1 s, for rock soils, up to 0.8 s for softer ones. However, from many natural recorded accelerograms of important earthquakes, the real spectral amplification factor appears to be much higher than 2.5 and this means that the spectrum leads to an unsafe seismic design of the structures. This point is an issue open to question and it is the object of the present study. In the present paper, the spectral amplification factor of the smooth design acceleration spectra is re-calculated on the grounds of a known "reliability index" for a desired probability of exceedance. As a pilot scheme, the seismic area of Greece is chosen, as it is the most seismically hazardous area in Europe. The accelerograms of the 82 most important earthquakes, which have occurred in Greece during the last 38 years, are used. The soil categories are taken into account according to EN/1998. The results that have been concluded from these data are compared with the results obtained from other strong earthquakes reported in the World literature.

Seismic performance assessment of NPP concrete containments considering recent ground motions in South Korea

  • Kim, Chanyoung;Cha, Eun Jeong;Shin, Myoungsu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.386-400
    • /
    • 2022
  • Seismic fragility analysis, a part of seismic probabilistic risk assessment (SPRA), is commonly used to establish the relationship between a representative property of earthquakes and the failure probability of a structure, component, or system. Current guidelines on the SPRA of nuclear power plants (NPPs) used worldwide mainly reflect the earthquake characteristics of the western United States. However, different earthquake characteristics may have a significant impact on the seismic fragility of a structure. Given the concern, this study aimed to investigate the effects of earthquake characteristics on the seismic fragility of concrete containments housing the OPR-1000 reactor. Earthquake time histories were created from 30 ground motions (including those of the 2016 Gyeongju earthquake) by spectral matching to the site-specific response spectrum of Hanbit nuclear power plants in South Korea. Fragility curves of the containment structure were determined under the linear response history analysis using a lumped-mass stick model and 30 ground motions, and were compared in terms of earthquake characteristics. The results showed that the median capacity and high confidence of low probability of failure (HCLPF) tended to highly depend on the sustained maximum acceleration (SMA), and increase when using the time histories which have lower SMA compared with the others.