DOI QR코드

DOI QR Code

Evaluation of EC8 and TBEC design response spectra applied at a region in Turkey

  • Yusuf Guzel (Department of Civil Engineering, Faculty of Engineering, Necmettin Erbakan University) ;
  • Fidan Guzel (Department of Civil Engineering, Faculty of Engineering, Igdir University)
  • Received : 2022.09.06
  • Accepted : 2023.08.22
  • Published : 2023.09.25

Abstract

Seismic performance analysis is one of the fundamental steps in the design of new or retrofitting buildings. In the seismic performance analysis, the adapted spectral acceleration curve for a given site mainly governs the seismic behavior of buildings. Since every soil site (class) has a different impact on the spectral accelerations of input motions, different spectral acceleration curves have to be involved for every soil class that the building is located on top of. Modern seismic design codes (e.g., Eurocode 8, EC8, or Turkish Building Earthquake Code, TBEC) provide design response spectra for all the soil classes to be used in the building design or retrofitting. This research aims to evaluate the EC8 and TBEC based design response spectra using the spectra of real earthquake input motions that occurred (and were recorded at only soil classes A, B and C, no recording is available at soil class D) in a specific area in Turkey. It also conducts response spectrum analyses of 5, 10 and 13 floor reinforced concrete building models under EC8, TBEC and actual spectral response curves. The results indicate that the EC8 and especially TBEC given design response spectra cannot be able to represent the mean actual spectral acceleration curves at soil classes A, B and C. This is particularly observed at periods higher than 0.3 s, 0.42 s and 0.55 s for the TBEC design response spectra, 0.54 s, 0.65 s and 0.84 s for the EC8 design response spectra at soil classes A, B and C, respectively. This is also reflected to the shear forces of three building models, as actual spectral acceleration curves lead to the highest shear forces, followed by the shear forces obtained from EC8 and, then, the TBEC design response spectra.

Keywords

References

  1. American Society of Civil Engineers (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, VA, USA.
  2. Bazzurro, P. and Cornell, C.A. (1999), "Disaggregation of seismic hazard", Bull. Seismol. Soc. Am., 89(2), 501-520. http://doi.org/10.1785/BSSA0890020501.
  3. Biot, M.A. (1941), "A mechanical analyzer for the prediction of earthquake stresses", Bull. Seismol. Soc. Am., 31(2), 151-171. https://doi.org/10.1785/BSSA0310020151
  4. Blume, J.A., Sharpe, R., Dalal, J.S. and Blume, J.A. (1973), "Recommendations for shape of earthquake response spectra", Research Report No. WASH-1254; John A. Blume and Associates, Washington D.C., USA.
  5. Bulut, F., Bohnhoff, M., Eken, T., Janssen, C., Kilic, T. and Dresen, G. (2012), "The east Anatolian fault zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations", J. Geophys. Res. Solid Earth, 117(B7), 1. http://doi.org/10.1029/2011JB008966.
  6. Campbell, K.W. (1981), "Near-source attenuation of peak horizontal acceleration", Bull. Seismol. Soc. Am., 71(6), 2039-2070. https://doi.org/10.1785/BSSA0710062039.
  7. Campbell, K.W. and Bozorgnia, Y. (1994), "Empirical analysis of strong ground motion from the 1992 Landers, California earthquake", Bull. Seismol. Soc. Am., 84(3), 573-588. https://doi.org/10.1785/BSSA0840030573.
  8. CEN (2005), Eurocode 8, Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings, CEN-CENELEC, Brussels, Belgium.
  9. Computers & Structures (2018), ETABS: Extended Three-Dimensional Analysis of Building Systems, Version 9.0, Computers & Structures, Berkeley, CA, USA.
  10. De Luca, F. and Lombardi, L. (2017), "EC8 design through linear time history analysis versus response spectrum analysis-Is it an enhancement for PBEE", 16th World Conference on Earthquake, 16WCEE, Santiago, Chile, January.
  11. Deoda, V.R. and Adhikary, S.A. (2020), "Preliminary proposal towards the revision of Indian seismic code considering site classification scheme, amplification factors and response spectra", Bull. Earthq. Eng., 18(6), 2843-2889. https://doi.org/10.1007/s10518-020-00806-2.
  12. Disaster and Emergency Management Presidency, AFAD (2013- present), AFAD Deprem katalogu; Ministry of Interior Ankara, Turkey. https://deprem.afad.gov.tr/ddakatalogu.
  13. Guzel, Y. (2019), "Influence of input motion selection and soil variability on nonlinear ground response analyses", Ph.D. dissertation, Newcastle University, Newcastle, UK.
  14. Idriss, I.M. (1991), "Procedures for selecting earthquake ground motions at rock sites", US Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD, USA.
  15. Kaiser, A., Holden, C., Beavan, J., Beetham, D., Benites, R., Celentano, A. and Zhao, J. (2012), "The Mw 6.2 Christchurch earthquake of February 2011: Preliminary report", N. Z. J. Geol. Geophys., 55(1), 67-90. https://doi.org/10.1080/00288306.2011.641182.
  16. Kramer, S.L. (1996), Geotechnical Earthquake Engineering, Prentice-Hall International (UK) Limited, London, UK.
  17. Mahmoud, S., Alsearheed, M. and Abdallah, W. (2021), "Seismic performance of high-rise buildings in selected regions in Saudi Arabia according to different seismic codes", Earthq. Eng. Eng. Vib., 20(1), 179-191. https://doi.org/10.1007/s11803-021-2013-z.
  18. McGuire, R.K. (1995), "Probabilistic seismic hazard analysis and design earthquakes: Closing the loop", Bull. Seismol. Soc. Am., 85(5), 1275-1284. http://doi.org/10.1785/BSSA0850051275.
  19. Mohraz, B. (1976), "A study of earthquake response spectra for different geological conditions", Bull. Seismol. Soc. Am., 66(3), 915-935. https://doi.org/10.1785/BSSA0660030915.
  20. Nabilah, A.B., Ahmadi, R., Harith, N.S.H., Adnan, A. and Suhatril, M. (2023), "Development of elastic design response spectra with emphasis on far-source earthquakes for low to moderate seismic region", Asian J. Civil Eng., 2023, 1-14. https://doi.org/10.1007/s42107-023-00600-w.
  21. Newmark, N.M. and Hall, W.J. (1982), "Earthquake spectra and design", Earthquake Engineering Research Institute, Berkeley, CA, USA.
  22. Newmark, N.M., Hall, W.J. and Mohraz, B. (1973), "A study of vertical and horizontal earthquake spectra", Earthquake Engineering Research Center, Richord, CA, USA.
  23. Pavel, F., Vacareanu, R., Pitilakis, K. and Anastasiadis, A. (2020), "Investigation on site-specific seismic response analysis for Bucharest (Romania)", Bull. Earthq. Eng., 18(5), 1933-1953. https://doi.org/10.1007/s10518-020-00789-0.
  24. Pitilakis, K., Riga, E. and Anastasiadis, A. (2012), "Design spectra and amplification factors for Eurocode 8", Bull. Earthq. Eng., 10(5), 1377-1400. http://doi.org/10.1007/s10518-012-9367-6.
  25. Pitilakis, K., Riga, E. and Anastasiadis, A. (2013), "New code site classification, amplification factors and normalized response spectra based on a worldwide ground-motion database", Bull. Earthq. Eng., 11(4), 925-966. https://doi.org/10.1007/s10518-013-9429-4.
  26. Pitilakis, K., Riga, E. and Anastasiadis, A. (2020), "Towards the revision of EC8: Proposal for an alternative site classification scheme and associated intensity-dependent amplification factors", 17th World Conference on Earthquake Engineering, Sendai, Japan, September.
  27. Pitilakis, K., Riga, E., Anastasiadis, A., Fotopoulou, S. and Karafagka, S. (2019), "Towards the revision of EC8: Proposal for an alternative site classification scheme and associated intensity dependent spectral amplification factors", Soil Dyn. Earthq. Eng., 126, 105137. https://doi.org/10.1016/j.soildyn.2018.03.030.
  28. Pousse, G., Berge-Thierry, C., Bonilla, L.F. and Bard, P.Y. (2005), "Eurocode 8 design response spectra evaluation using the K-net Japanese database", J. Earthq. Eng., 9(4), 547-574. http://doi.org/10.1080/13632460509350555.
  29. Rangin, C., Bader, A.G., Pascal, G., Ecevitoglu, B. and Gorur, N. (2002), "Deep structure of the Mid Black Sea High (offshore Turkey) imaged by multi-channel seismic survey (BLACKSIS cruise)", Mar. Geol., 182(3-4), 265-278. http://doi.org/10.1016/S0025-3227(01)00236-5.
  30. Rey, J., Faccioli, E. and Bommer, J.J. (2002), "Derivation of design soil coefficients (S) and response spectral shapes for Eurocode 8 using the European Strong-Motion Database", J. Seismol., 6(4), 547-555. https://doi.org/10.1023/A:1021169715992.
  31. Seed, R.B. (1990), "Preliminary report on the principal geotechnical aspects of the October 17, 1989 Loma Prieta earthquake", Research Report UCB/EERC-90/05; Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
  32. Sotiriadis, D., Klimis, N., Margaris, B. and Sextos, A. (2020), "Analytical expressions relating free-field and foundation ground motions in buildings with basement, considering soil-structure interaction", Eng. Struct., 216, 110757. https://doi.org/10.1016/j.engstruct.2020.110757.
  33. Stone, W.C., Yokel, F.Y., Celebi, M., Hanks, T, and Leyendecker, E.V. (1987), "Engineering aspects of the September 19, 1985 Mexico earthquake", Research Report No. NBS BSS 165; Building Science Series, National Institute of Standards and Technology, Gaithersburg, MD, USA.
  34. Turkish Building Earthquake Code (2018), Turkiye Bina Deprem Yonetmeligi, Deprem Etkisi Altinda Binalarin Tasarimi icin Esaslar, Ankara, Turkey.
  35. Ulusay, R., Tuncay, E., Sonmez, H. and Gokceoglu, C. (2004), "An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey", Eng. Geol., 74(3-4), 265-291. https://doi.org/10.1016/j.enggeo.2004.04.002.
  36. Yavasoglu, H., Tari, E., Tuysuz, O., Cakir, Z. and Ergintav, S. (2011), "Determining and modeling tectonic movements along the central part of the North Anatolian Fault (Turkey) using geodetic measurements", J. Geodyn., 51(5), 339-343. http://doi.org/10.1016/j.jog.2010.07.003.