• Title/Summary/Keyword: seismic loss

Search Result 196, Processing Time 0.026 seconds

Geophysical Investigation of Gas Hydrate-Bearing Sediments in the Sea of Okhotsk (오호츠크해 가스하이드레이트 퇴적층의 지구물리 탐사)

  • Jin, YoungKeun;Chung, KyungHo;Kim, YeaDong
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.3
    • /
    • pp.207-215
    • /
    • 2004
  • As the sea connecting with the East Sea, the Sea of Okhotsk is the most potential area of gas hydrates in the world. In other to examine geophysical structures of gas hydrate-bearing sediments in the Sea of Okhotsk, the CHAOS (hydro-Carbon Hydrate Accumulation in the Okhotsk) international research expedition was carried out in August 2003. In the expedition, high-resolution seismic and geochemical survey was also conducted. Sparker seismic profiles show only diffusive high-amplitude reflections without BSRs at BSR depth. It means that BSR appears to be completely different images on seismic profiles obtained using different frequencies. Many gas chimneys rise up from BSR depth to seafloor. The chimneys can be divided into two groups with different seismic characteristics; wipe-out (WO) and enhanced reflection (ER) chimneys. Different seismic responses in the chimneys would be caused by amount of gas and gas hydrates filling in the chimneys. In hydroacoustic data, a lot of gas flares rise up several hundreds meters from seafloor to the water column. All flares took placed at the depths within gas hydrate stability zone. It is interpreted that gas hydrate-bearing sediments with low porosity and permeability due to gas hydrate filling in the pore space make good pipe around gas chimneys in which gas is migrating up without loss of amount. Therefore, large-scale gas flare at the site on gas chimney releases into the water column.

  • PDF

Seismic Performance of Reinforced Concrete Shear Wall Buildings with Piloti (필로티를 갖는 철근콘크리트 전단벽식 건물의 내진성능)

  • Kwon Young-Wung;Kim Min-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.587-594
    • /
    • 2005
  • The purpose of seismic design is to ensure the serviceability of buildings against earthquake, which might be occurred during the service life of buildings, and to minimize the loss of life by preventing their failure under strong earthquake. The lack resistance of walls resulting from a tendency toward high-rise apartment buildings with shear walls and use of piloti would lead to a concentration of inelastic behaviors in their weak story. In this study, the seismic performance of reinforced concrete shear wall buildings haying piloti was analyzed by using the evaluation techniques which was proposed by FEMA 273 and ATC-40. The results from comparison with these two techniques are summarized as follows.; The results of elastic analysis method for seismic performance evaluation show that the effect of piloti and building height decrease performance index. In case of shear wall building, the state of insufficient shear stress governs their overall performance and it becomes evident in the case of the buildings with more than 25 stories. For the buildings of piloti, the change of mass, weak story, as well as insufficient shear stress, decrease the performance index rapidly compared with the performance index of the buildings without piloti. The results, obtained from the nonlinear static analysis using capacity spectrum method, indicate that the performance Point increases for the structure having Piloti and high story. Also, deformation limits of buildings satisfy the allowable criteria at the life safety level, but the immediate occupancy level is exceeded in buildings which have more than 25 stories.

A Review of Seismic Full Waveform Inversion Based on Deep Learning (딥러닝 기반 탄성파 전파형 역산 연구 개관)

  • Sukjoon, Pyun;Yunhui, Park
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.227-241
    • /
    • 2022
  • Full waveform inversion (FWI) in the field of seismic data processing is an inversion technique that is used to estimate the velocity model of the subsurface for oil and gas exploration. Recently, deep learning (DL) technology has been increasingly used for seismic data processing, and its combination with FWI has attracted remarkable research efforts. For example, DL-based data processing techniques have been utilized for preprocessing input data for FWI, enabling the direct implementation of FWI through DL technology. DL-based FWI can be divided into the following methods: pure data-based, physics-based neural network, encoder-decoder, reparameterized FWI, and physics-informed neural network. In this review, we describe the theory and characteristics of the methods by systematizing them in the order of advancements. In the early days of DL-based FWI, the DL model predicted the velocity model by preparing a large training data set to adopt faithfully the basic principles of data science and apply a pure data-based prediction model. The current research trend is to supplement the shortcomings of the pure data-based approach using the loss function consisting of seismic data or physical information from the wave equation itself in deep neural networks. Based on these developments, DL-based FWI has evolved to not require a large amount of learning data, alleviating the cycle-skipping problem, which is an intrinsic limitation of FWI, and reducing computation times dramatically. The value of DL-based FWI is expected to increase continually in the processing of seismic data.

Loss Estimation in Southeast Korea from a Scenario Earthquake using the Deterministic Method in HAZUS

  • Kim, Kwang-Hee;Kang, Su-Young
    • 한국방재학회:학술대회논문집
    • /
    • 2009.02b
    • /
    • pp.43-50
    • /
    • 2009
  • Strong ground motion attenuation relationship represents a comprehensive trend of ground shakings at sites with distances from the source, geology, local soil conditions, and others. It is necessary to develop an attenuation relationship with careful considerations of characteristics of the target area for reliable seismic hazard/risk assessments. In the study, observed ground motions from the January 2007 magnitude 4.9 Odaesan earthquake and the events occurring in the Gyeongsang provinces are compared with the previously proposed ground attenuation relationships in the Korean Peninsula to select most appropriate one. In the meantime, a few strong ground motion attenuation relationships are proposed and introduced in HAZUS, which have been designed for the Western United States and the Central and Eastern United States. The selected relationship from the ones for the Korean Peninsula has been compared with attenuation relationships available in HAZUS. Then, the attenuation relation for the Western United States proposed by Sadigh et al. (1997) for the Site Class B has been selected for this study. Reliability of the assessment will be improved by using an appropriate attenuation relation. It has been used for the earthquake loss estimation of the Gyeongju area located in southeast Korea using the deterministic method in HAZUS with a scenario earthquake (M=6.7). Our preliminary estimates show 15.6% damage of houses, shelter needs for about three thousands residents, and 75 life losses in the study area for the scenario events occurring at 2 A.M. Approximately 96% of hospitals will be in normal operation in 24 hours from the proposed event. Losses related to houses will be more than 114 million US dollars. Application of the improved methodology for loss estimation in Korea will help decision makers for planning disaster responses and hazard mitigation.

  • PDF

Response of a frame structure on a canyon site to spatially varying ground motions

  • Bi, Kaiming;Hao, Hong;Ren, Weixin
    • Structural Engineering and Mechanics
    • /
    • v.36 no.1
    • /
    • pp.111-127
    • /
    • 2010
  • This paper studies the effects of spatially varying ground motions on the responses of a bridge frame located on a canyon site. Compared to the spatial ground motions on a uniform flat site, which is the usual assumptions in the analysis of spatial ground motion variation effects on structures, the spatial ground motions at different locations on surface of a canyon site have different intensities owing to local site amplifications, besides the loss of coherency and phase difference. In the proposed approach, the spatial ground motions are modelled in two steps. Firstly, the base rock motions are assumed to have the same intensity and are modelled with a filtered Tajimi-Kanai power spectral density function and an empirical spatial ground motion coherency loss function. Then, power spectral density function of ground motion on surface of the canyon site is derived by considering the site amplification effect based on the one dimensional seismic wave propagation theory. Dynamic, quasi-static and total responses of the model structure to various cases of spatially varying ground motions are estimated. For comparison, responses to uniform ground motion, to spatial ground motions without considering local site effects, to spatial ground motions without considering coherency loss or phase shift are also calculated. Discussions on the ground motion spatial variation and local soil site amplification effects on structural responses are made. In particular, the effects of neglecting the site amplifications in the analysis as adopted in most studies of spatial ground motion effect on structural responses are highlighted.

A Simulation of Earthquake Loss Estimation for a Gyeongju Event (경주지역 발생 지진에 대한 지진손실예측 시뮬레이션)

  • Kang, Su-Young;Kim, Kwang-Hee;Suk, Bong-Chool;Yoo, Hai-Soo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.95-103
    • /
    • 2008
  • Knowledge of expected losses in terms of physical, economic, and social damages due to a potential earthquake will be helpful in the effort to mitigate seismic hazards. In this study, losses due to a magnitude 6.7 scenario earthquake in the Gyeongju area have been estimated using the deterministic method in HAZUS. The attenuation relation proposed by Sadigh et al.(1997) for site classes B, C, and D, which are assumed to represent the characteristics of the strong-motion attenuation in the Korean Peninsula, has been applied. Losses due to the hypothetical earthquake have been also calculated using other attenuation relationships to examine their roles in the loss estimation. The findings indicate differences among the estimates based on various attenuation relationships. Estimated losses of the Gyeongju area by a scenario earthquake using HAZUS should be seriously considered in the planning of disaster response and hazard mitigation.

Shear deformation model for reinforced concrete columns

  • Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.39-52
    • /
    • 2008
  • Column shear failures observed during recent earthquakes and experimental data indicate that shear deformations are typically associated with the amount of transverse reinforcement, column aspect ratio, axial load, and a few other parameters. It was shown that in some columns shear displacements can be significantly large, especially after flexural yielding. In this paper, a piecewise linear model is developed to predict an envelope of the cyclic shear response including the shear displacement and corresponding strength predictions at the first shear cracking, peak strength, onset of lateral strength degradation, and loss of axial-load-carrying capacity. Part of the proposed model is developed using the analysis results from the Modified Compression Field Theory (MCFT). The results from the proposed model, which uses simplified equations, are compared with the column test data.

Study for the Structural walls with Interlocking Spirals on the boundary (단부에 Interlocking Spiral을 가진 전단벽의 거동에 관한 연구)

  • 홍성걸;김록배;정하선;구광현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.865-870
    • /
    • 2001
  • This paper propose a new seismic detail for ductility enhancement by interlocking spiral reinforcement in the potential yield regions of a wall. Through the theoretical consideration and experiment program, confinement with interlocking spirals lead the structural walls to ductile behavior. All specimens show stable hysteretic behavior and good energy dissipation capacity. Also the increase of shear strength mainly induces a flexural failure mode. As interlocking spiral are used in lapped splice region, they increase the bond strength and prevent a early tensile failure caused by the loss of bond stresses. Consequently, the confinement with interlocking spirals may result in a lower value of force reductions factor, newly proposed detail will be provide more economical design.

  • PDF

Design and Test of ASME Strainer for Coolant System of Research Reactor (연구용 원자로 냉각계통의 ASME 스트레이너 설계 및 성능시험)

  • Park, Yong-Chul;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.24-29
    • /
    • 1999
  • The ASME strainers have been newly installed at the suction side of each reactor coolant pump to get rid of the foreign materials which may damage the pump impeller or interfere with the coolant path of fuel flow tube or primary plate type heat exchanger. The strainer was designed in accordance with ASME SEC. III, DIV. 1, Class 3 and the structural integrity was verified by seismic analysis. The screen was designed in accordance with the effective void area from the result of flow analysis for T-type strainer. After installation of the strainer, it was confirmed through the field test that the flow characteristics of primary cooling system were not adversely affected. The pressure loss coefficient was calculated by Darcy equation using the pressure difference through each strainer and the flow rate measured during the strainer performance test. And these are useful data to predict flow variations by the pressure difference.

  • PDF

Study on Seismic Performance Evaluation of Existing Apartment with Wall Type (벽식 노후 공동주택의 내진성능평가에 관한 연구)

  • Jeong Chul-Hwa;Chung Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.52-55
    • /
    • 2004
  • Before incorporating the earthquake-resistance design in design code(998), most of existing residential buildings were built without having lateral resistance capacity in addition to their structural peculiarity such as exterior stair ways, exterior elevator room. For these reasons, the retrofitting research demands for existing buildings arise recently and many retrofitting methods are proposed. These tasks are important to reduce the enormous economic loss and environmental issues. In this study, Scaled residential buildings with/without lateral resistance were tested and monitored with external lateral load especially toward the longer side of the building. From these experiments, enhanced retrofitting methods of old shear wall system are proposed and also compared with structural analysis.

  • PDF