• Title/Summary/Keyword: seismic excitations

Search Result 315, Processing Time 0.023 seconds

Dynamic Characterisics of the Bridge Retrofitted by Restrainer under Seismic Excitations Considering Pounding Effects (충돌효과를 고려한 Restrainer로 보강된 교량의 지진하중에 대한 거동특성분석)

  • 김상효;마호성;이상우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.75-86
    • /
    • 1999
  • An analysis model is developed to evaluate the dynamic responses of a bridge system under seismic excitations, in which pounding actions between girders are considered in addition to other phenomena such as nonlinear pier motion, rotational and translational motions of foundations. The model also considers the abutment and restrainers connecting adjacent girders to prevent the unseating failures. Using the developed model, the longitudinal dynamic behaviors of a bridge system are examined for various peak ground accelerations, and the effects of the applied restrainers are investigated. It is found that the restrainers reduce the relative displacement with the shorter clearance length as well as the higher stiffness of the restrainers for moderate excitations. However, in the region with strong excitations the restrainers may yield due to the large relative displacement. Therefore, the extension of support length in addition to restrainers may need to prevent the unseating failure more effectively.

  • PDF

Periodic seismic performance evaluation of highway bridges using structural health monitoring system

  • Yi, Jin-Hak;Kim, Dookie;Feng, Maria Q.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.527-544
    • /
    • 2009
  • In this study, the periodic seismic performance evaluation scheme is proposed using a structural health monitoring system in terms of seismic fragility. An instrumented highway bridge is used to demonstrate the evaluation procedure involving (1) measuring ambient vibration of a bridge under general vehicle loadings, (2) identifying modal parameters from the measured acceleration data by applying output-only modal identification method, (3) updating a preliminary finite element model (obtained from structural design drawings) with the identified modal parameters using real-coded genetic algorithm, (4) analyzing nonlinear response time histories of the structure under earthquake excitations, and finally (5) developing fragility curves represented by a log-normal distribution function using maximum likelihood estimation. It is found that the seismic fragility of a highway bridge can be updated using extracted modal parameters and can also be monitored further by utilizing the instrumented structural health monitoring system.

FORM-based Structural Reliability Analysis of Dynamical Active Control System (동적능동제어시스템의 FORM기반 구조신뢰성해석)

  • Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.74-80
    • /
    • 2013
  • This study describes structural reliability analysis of actively-controlled structure for which random vibration analysis is incorporated into the first-order reliability method (FORM) framework. The existing approaches perform the reliability analysis based on the RMS response, whereas the proposed study uses the peak response for the reliability analysis. Therefore, the proposed approach provides us a meaningful performance measure of the active control system, i.e., realistic failure probability. In addition, it can deal with the uncertainties in the system parameters as well as the excitations in single-loop reliability analysis, whereas the conventional random vibration analysis requires double-loop reliability analysis; one is for the system parameters and the other is for stochastic excitations. The effectiveness of the proposed approach is demonstrated through a numerical example where the proposed approach shows fast and accurate reliability (or inversely failure probability) assessment results of the dynamical active control system against random seismic excitations in the presence of parametric uncertainties of the dynamical structural system.

Three dimensional modelling of ancient colonnade structural systems subjected to harmonic and seismic loading

  • Sarhosis, V.;Asteris, P.G.;Mohebkhah, A.;Xiao, J.;Wang, T.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.633-653
    • /
    • 2016
  • One of the major threats to the stability of classical columns and colonnades are earthquakes. The behavior of columns under high seismic excitation loads is non-linear and complex since rocking, wobbling and sliding failure modes can occur. Therefore, three dimensional simulation approaches are essential to investigate the in-plane and out-of-plane response of such structures during harmonic and seismic loading excitations. Using a software based on the Distinct Element Method (DEM) of analysis, a three dimensional numerical study has been performed to investigate the parameters affecting the seismic behaviour of colonnades' structural systems. A typical section of the two-storey colonnade of the Forum in Pompeii has been modelled and studied parametrically, in order to identify the main factors affecting the stability and to improve our understanding of the earthquake behaviour of such structures. The model is then used to compare the results between 2D and 3D simulations emphasizing the different response for the selected earthquake records. From the results analysis, it was found that the high-frequency motion requires large base acceleration amplitude to lead to the collapse of the colonnade in a shear-slip mode between the drums. However, low-frequency harmonic excitations are more prominent to cause structural collapse of the two-storey colonnade than the high-frequency ones with predominant rocking failure mode. Finally, the 2D analysis found to be unconservative since underestimates the displacement demands of the colonnade system when compared with the 3D analysis.

The effect of local topography on the seismic response of a coupled train-bridge system

  • Qiao, Hong;Du, Xianting;Xia, He;De Roeck, Guido;Lombaert, Geert;Long, Peiheng
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.177-191
    • /
    • 2019
  • The local topography has a significant effect on the characteristics of seismic ground motion. This paper investigates the influence of topographic effects on the seismic response of a train-bridge system. A 3-D finite element model with local absorbing boundary conditions is established for the local site. The time histories of seismic ground motion are converted into equivalent loads on the artificial boundary, to obtain the seismic input at the bridge supports. The analysis of the train-bridge system subjected to multi-support seismic excitations is performed, by applying the displacement time histories of the seismic ground motion to the bridge supports. In a case study considering a bridge with a span of 466 m crossing a valley, the seismic response of the train-bridge system is analyzed. The results show that the local topography and the incident angle of seismic waves have a significant effect on the seismic response of the train-bridge system. Leaving these effects out of consideration may lead to unsafe analysis results.

Seismic Design Guidelines for Welded Steel Oil Storge Tank (KS B 6225) (강제석유저장탱크(KS B 6225)의 내진설계기준 개선 안)

  • Park, Jong-Ryul;O, Taek-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.544-552
    • /
    • 2002
  • Recommended seismic design guide for the flat bottom vortical-cylindrical oil storage tanks in KS B 6225 is presented. Under earthquake excitations, the hydrodynamic pressure exerted on the tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea, zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described.

Seismic Design Guidelines for Welded Steel Oil Storge Tank (KS B 6225) (강제 석유 저장 탱크(KS B 6225)의 내진 설계 기준 개선 안)

  • Park, Jong-Ryul;Oh, Taek- Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.166-173
    • /
    • 2001
  • Recommended seismic design guide for the flat bottom vertical-cylindrical oil storage tanks in KS B 6225 is presented. Under earthquake excitations, the hydrodynamic pressure exerted on the tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea, zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described.

  • PDF

Seismic Design Program for Oil Storage Tank (액체저장탱크의 내진설계 프로그램 개발)

  • 박종률;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.551-555
    • /
    • 1997
  • IJnder earthquake excitations, the hydrodynamic pressure exerted on the flat bottom vertical-cylindrical oil storage tank walls produces overturning moment which may cause either a failure of the anchors or a buckling of the tank shell near its base. The basis for establishing design loads due to hydrodynamic pressure is described including seismic zone risk map in Korea. zone coefficients and the essential facilities factor. This procedure for calculating applied compressive stress on the shell base subjecting to seismic load and for estimating the allowable buckling stress is described. And seismic design program for the tanks is presented.

  • PDF

Seismic Behavior Analyses of a Bridge Considering Damage of Bearings (받침부 손상을 고려한 교량시스템의 지진거동분석)

  • 김상효;마호성;이상우;조병철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.454-461
    • /
    • 2001
  • Dynamic responses of a multi-span simply supported bridge are examined under seismic excitations considering damage of bearings. An idealized mechanical model which can consider components such as pounding, friction at the supports, abutment-soil interaction, rotational and translational motions of foundations, and the nonlinear pier motions, is developed to analyze the effects due to damage of bearings. It is assumed that the bearing's response after failure can be expressed with a sliding model with a friction coefficient between the superstructure and the pier top. It is found that the global seismic behaviors are significantly influenced by the damage of bearings and the damage of bearings may lead to unseating failure at unpredicted supports. Therefore, It can be concluded that detailed seismic response analyses of bridge systems considering damage of bearings is required for the purpose of the seismic safety evaluation.

  • PDF

A high precision direct integration scheme for non-stationary random seismic responses of non-classically damped structures

  • Lin, Jiahao;Shen, Weiping;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.215-228
    • /
    • 1995
  • For non-classically damped structures subjected to evolutionary random seismic excitations, the non-stationary random responses are computed by means of a high precision direct (HPD) integration scheme combined with the pseudo excitation method. Only real modes are used, so that the reduced equations of motion remain coupled for such non-classically damped structures. In the given examples, the efficiency of this method is compared with that of the Newmark method.