• 제목/요약/키워드: seismic applicability

검색결과 236건 처리시간 0.024초

Comparison of Different Numerical Models of RC Elements for Predicting the Seismic Performance of Structures

  • Zendaoui, Abdelhakim;Kadid, A.;Yahiaoui, D.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.461-478
    • /
    • 2016
  • This paper aims to provide guidelines for the numerical modeling of reinforced concrete (RC) frame elements in order to assess the seismic performance of structures. Several types of numerical models RC frame elements are available in nonlinear structural analysis packages. Since these numerical models are formulated based on different assumption and theories, the models accuracy, computing time, and applicability vary, which poses a great difficulty to practicing engineering and limits their confidence in the analysis resultants. In this study, the applicability of four representative numerical models of RC frame elements is evaluated through comparison with experimental results of four-storey bare frame available from European Laboratory for Structural Assessment. The accuracy of a numerical model is evaluated according to the top displacement, interstorey drift, Maximum storey shear, damage pattern and energy dissipation capacity of the frame structure. The results obtained allow a better understanding of the characteristics and potentialities of all procedures, helping the user to choose the best approach to perform nonlinear analysis.

전기비저항 및 탄성파속도를 이용한 터널암반의 정량적 평가수법과 적용성 (A tunnel rock mass classification technique and its applicability using electrical resistivity and seismic wave velocity)

  • 박삼규;김정호;조성준;이명종;손정술
    • 한국터널지하공간학회 논문집
    • /
    • 제5권3호
    • /
    • pp.291-299
    • /
    • 2003
  • 최근 산악터널의 지반조사에 전기 및 전자탐사를 실시하는 사례가 증가하고 있으며 지반의 전기비저항을 이용한 터널지반의 정량적 평가수법의 필요성이 요구되고 있다. 따라서 본 논문은 암석의 전기비저항과 탄성파속도가 각각 암석의 공극율과 밀접한 관계가 있는 것을 이용하여 지반의 전기비저항으로부터 탄성파속도를 환산하는 수법을 제안한다. 또 이 수법을 이용하여 실제터널에 있어서 지반의 전기비저항으로부터 탄성파속도를 환산하여 암반분류를 행하여 지보패턴을 설정하고 이를 실제 터널시공에 있어서 설정한 지보패턴과 비교함으로써 그 적용성을 검토한다.

  • PDF

Application of steel equivalent constitutive model for predicting seismic behavior of steel frame

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1055-1075
    • /
    • 2015
  • In order to investigate the accuracy and applicability of steel equivalent constitutive model, the calculated results were compared with typical tests of steel frames under static and dynamic loading patterns firstly. Secondly, four widely used models for time history analysis of steel frames were compared to discuss the applicability and efficiency of different methods, including shell element model, multi-scale model, equivalent constitutive model (ECM) and traditional beam element model (especially bilinear model). Four-story steel frame models of above-mentioned finite element methods were established. The structural deformation, failure modes and the computational efficiency of different models were compared. Finally, the equivalent constitutive model was applied in seismic incremental dynamic analysis of a ten-floor steel frame and compared with the cyclic hardening model without considering damage and degradation. Meanwhile, the effects of damage and degradation on the seismic performance of steel frame were discussed in depth. The analysis results showed that: damages would lead to larger deformations. Therefore, when the calculated results of steel structures subjected to rare earthquake without considering damage were close to the collapse limit, the actual story drift of structure might already exceed the limit, leading to a certain security risk. ECM could simulate the damage and degradation behaviors of steel structures more accurately, and improve the calculation accuracy of traditional beam element model with acceptable computational efficiency.

SSI해석을 통한 압축전담 교량 내진보강공법 거동 특성 연구 (Behavior Characteristics of Compression-Only Bridge Seismic Reinforcement Method Using SSI Analysis)

  • 장유식;윤원섭;유광호
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1231-1238
    • /
    • 2022
  • In this study, the reinforcement effect of the compression-only bridge seismic reinforcement method, which is mainly applied to old bridges, was studied through SSI analysis. As the analysis conditions, acceleration magnitudes of 0.1g, 0.15g, and 0.2 g were applied, and long-period and short-period seismic waves were applied. As a result of the analysis according to the assumed ground characteristics and structure size, the horizontal displacement at the reinforced section was reduced by about 9%, and the long-period seismic wave had a 95% larger displacement than the short-period seismic wave. In addition, an increase in acceleration of 0.1g resulted in a displacement of about 50%, and a large increase in displacement was observed in long-period seismic waves. As a result of the analysis, in the case of the compression-only bridge seismic reinforcement method, there was a reinforcing effect, so the field applicability was excellent.

비선형 정적 해석법을 이용한 사장교의 지진해석 (Seismic Analysis of Cable-Stayed Bridges using Nonlinear Static Procedures)

  • 신동규;곽효경
    • 대한토목학회논문집
    • /
    • 제31권2A호
    • /
    • pp.59-69
    • /
    • 2011
  • 성능기반 내진 설계방법의 설계철학을 가지고 있는 비선형 정적 해석법(NSPs)은 최근 구조물의 지진해석방법으로서 그 사용성을 인정받고 있다. 비선형 정적 해석법을 통한 지진해석은 기존의 비선형 시간 이력법에 비해서 방법이 간단하며, 직관적으로 구조물의 지진해석을 수행할 수 있는 등의 장점으로 빌딩구조물의 지진해석법으로 널리 사용되고 있다. 하지만, 기본 진동모드에 의해서 구조물의 거동이 지배되지 않는 구조물의 경우에는 그 사용성에 대한 연구가 매우 제한적이다. 이를 개선하기 위한 고차모드의 기여분을 반영할 수 있는 비선형 정적 해석법으로 모드별 비탄성 정적해석법(Modal Pushover Analysis; MPA)이 제시되었고, 또한 이를 개선한 개선된 모드별 비탄성 정적해석법(Improved Modal Pushover Analysis; IMPA) 역시 소개되었다. 본 논문에서는 기존에 소개된 네가지 비선형 정적 해석법을 이용하여 국내에 설계/시공된 두 사장교의 지진해석 가능성을 알아보며, 각 방법의 장/단점을 분석 하여 비선형 정적 해석법의 응용가능성에 대해서 알아보았다.

Integrated approach using well data and seismic attributes for reservoir characterization

  • Kim Ji- Yeong;Lim Jong-Se;Shin Sung-Ryul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.723-730
    • /
    • 2003
  • In general, well log and core data have been utilized for reservoir characterization. These well data can provide valuable information on reservoir properties with high vertical resolution at well locations. While the seismic surveys cover large areas of field but give only indirect features about reservoir properties. Therefore it is possible to estimate the reservoir properties guided by seismic data on entire area if a relationship of seismic data and well data can be defined. Seismic attributes calculated from seismic surveys contain the particular reservoir features, so that they should be extracted and used properly according to the purpose of study. The method to select the suitable seismic attributes among enormous ones is needed. The stepwise regression and fuzzy curve analysis based on fuzzy logics are used for selecting the best attributes. The relationship can be utilized to estimate reservoir properties derived from seismic attributes. This methodology is applied to a synthetic seismogram and a sonic log acquired from velocity model. Seismic attributes calculated from the seismic data are reflection strength, instantaneous phase, instantaneous frequency and pseudo sonic logging data as well as seismic trace. The fuzzy curve analysis is used for choosing the best seismic attributes compared to sonic log as well data, so that seismic trace, reflection strength, instantaneous frequency, and pseudo sonic logging data are selected. The relationship between the seismic attribute and well data is found out by the statistical regression method and estimates the reliable well data at a specific field location derived from only seismic attributes. For a future work in this study, the methodology should be checked an applicability of the real fields with more complex and various reservoir features.

  • PDF

Post-earthquake warning for Vrancea seismic source based on code spectral acceleration exceedance

  • Balan, Stefan F.;Tiganescu, Alexandru;Apostol, Bogdan F.;Danet, Anton
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.365-372
    • /
    • 2019
  • Post-earthquake crisis management is a key capability for a country to be able to recover after a major seismic event. Instrumental seismic data transmitted and processed in a very short time can contribute to better management of the emergency and can give insights on the earthquake's impact on a specific area. Romania is a country with a high seismic hazard, mostly due to the Vrancea intermediate-depth earthquakes. The elastic acceleration response spectrum of a seismic motion provides important information on the level of maximum acceleration the buildings were subjected to. Based on new data analysis and knowledge advancements, the acceleration elastic response spectrum for horizontal ground components recommended by the Romanian seismic codes has been evolving over the last six decades. This study aims to propose a framework for post-earthquake warning based on code spectrum exceedances. A comprehensive background analysis was undertaken using strong motion data from previous earthquakes corroborated with observational damage, to prove the method's applicability. Moreover, a case-study for two densely populated Romanian cities (Focsani and Bucharest) is presented, using data from a $5.5M_W$ earthquake (October 28, 2018) and considering the evolution of the three generations of code-based spectral levels for the two cities. Data recorded in free-field and in buildings were analyzed and has confirmed that no structural damage occurred within the two cities. For future strong seismic events, this tool can provide useful information on the effect of the earthquake on structures in the most exposed areas.

Seismic retrofit of structures using added steel column friction dampers

  • Mohammad Mahdi Javidan;Asad Naeem;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.257-270
    • /
    • 2023
  • In this study, the feasibility and applicability of a friction damper with a vertical installation scheme are investigated. This device is composed of a steel section and two friction hinges at both ends which dissipate seismic energy. Due to its small width and vertical installation scheme, the proposed damper can minimize the interference with architectural functions. To evaluate the performance of the proposed damper, its mechanical behavior is theoretically evaluated and the required formulas for the yield strength and elastic stiffness are derived. The theoretical formulas are verified by establishing the analytical model of the damper in the SAP2000 software and comparing their results. To further investigate the performance of the developed damper, the provided analytical model is applied to a 4-story reinforced concrete (RC) structure and its performance is evaluated before and after retrofit under the Maximum Considered Earthquake (MCE) hazard level. The seismic performance is thoroughly evaluated in terms of maximum interstory drift ratio, displacement time history, residual displacement, and energy dissipation. The results show that the proposed damper can be efficiently used to protect the structure against seismic loads.

보수.보강된 철근콘크리트 교각의 내진해석 (Seismic Analysis of RC Piers being repaired/retrofitted)

  • 이동형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.198-201
    • /
    • 2006
  • In order to evaluate the seismic performance of reinforced concrete bridge piers, an inelastic time-dependent element is proposed. The proposed element enables increased characteristics due to structural intervention (i.e., repair and retrofitting) to be accurately reflected to the degraded strength and stiffness of the members. Comparative studies are conducted for reinforced concrete bridge columns being repaired and retrofitted and show good correlation between analytical prediction and experimental results. In addition, a nonlinear time-history analysis of a reinforced concrete bridge under multiple earthquakes confirms the applicability and effectiveness of the present development.

  • PDF

등가선형 지반스프링모델을 사용한 교량의 지진응답해석 (Seismic Response Analysis of Bridges Using Equivalent Linear Soil/Foundation Spring Model)

  • 박형기
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.372-380
    • /
    • 2000
  • Seismic forces for member design of bridges may be determined by modifying elastic member forces induced by design earthquakes using appropriate response modification factors according to national design code of bridges. Modeling of soil/foundation system is one of the critical parameter in the process of elastic seismic analysis of bridge system which greatly affects on the analysis results. In this paper, a simplified modelling procedure of soil/foundation system which gives practically reasonable results is presented and its applicability has been validated through example bridge. Based on the results, it has been shown that the procedure is acceptable in modelling soil/foundation system for practical seismic analysis of bridges.

  • PDF