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Abstract: In general, well log and core data have been utilized for reservoir characterization. These well data can
provide valuable information on reservoir properties with high vertical resolution at well locations. While the seis-
mic surveys cover large areas of field but give only indirect features about reservoir properties. Therefore it is possi-
ble to estimate the reservoir properties guided by seismic data on entire area if a relationship of seismic data and well
data can be defined. Seismic attributes calculated from seismic surveys contain the particular reservoir features, so
that they should be extracted and used properly according to the purpose of study. The method to select the suitable
seismic attributes among enormous ones is needed. The stepwise regression and fuzzy curve analysis based on fuzzy
logics are used for selecting the best attributes. The relationship can be utilized to estimate reservoir properties de-
rived from seismic attributes. This methodology is applied to a synthetic seismogram and a sonic log acquired from
velocity model. Seismic attributes calculated from the seismic data are reflection strength, instantaneous phase, in-
stantaneous frequency and pseudo sonic logging data as well as seismic trace. The fuzzy curve analysis is used for
choosing the best seismic attributes compared to sonic log as well data, so that seismic trace, reflection strength, in-
stantaneous frequency, and pseudo sonic logging data are selected. The relationship between the seismic attribute
and well data is found out by the statistical regression method and estimates the reliable well data at a specific field
location derived from only seismic attributes. For a future work in this study, the methodology should be checked an
applicability of the real fields with more complex and various reservoir features.

1. Introduction

Reservoir characterization has gained a new momentum in the past decade, largely due to the introduction of geo-
statistical methods to the petroleum industry and rapid progress made in their advancement. The improved under-
standing of a reservoir will aid in better management and better exploitation of its hydrocarbon recovery potential.

The challenge in understanding and predicting reservoir performance is two-fold: first, to describe reservoir geo-
logic heterogeneities realistically and quantitatively, and second to model reservoir flow behaviour in the presence
of all heterogeneities accurately and efficiently. While seismic data is routinely and effectively used to estimate the
structure of reservoir bodies, it typically plays no role in this essential task of estimating rock or reservoir property
distributes, as measured or computed form logs. In the presence of 3D seismic and logged wells, the simultaneous
analysis of seismic attribute data with borehole data in an interactive environment often leads to better estimates of
property distributions in comparison with estimates generated from well data alone, where the seismic data is used
only for geometry information.

This paper briefly discusses the steps involved in this analysis. First, extract the seismic attributes from 3D seis-
mic survey data. And a global prioritising technique called fuzzy curve analysis was used to select extracted attrib-
utes to correlate with log measurements. Selected attributes then served as input variables to a regression or a neu-
ral network to develop multivariate correlations with the well log measurements.

2. Definition of Seismic attributes

We choose to analyze not the seismic data itself but the attributes of the seismic data. One reason why we expect this
to be more beneficial than the raw seismic data is that many of these attributes will be non-linear, thus increasing the
predictive power of the technique. A second reason is that there is often benefit in breaking down the input data into
component parts. This process is called pre-processing of feature extraction, and it can often greatly improve the per-
formance of a pattern recognition system by reducing the dimensionality of the data before using it to train the system.
Pre-processing can also provide a mean of adding prior knowledge into the design of the pattern recognition system.

We define a seismic attribute generally as any mathematical transform of the seismic trace data. This includes
simple attributes such as trace envelope, instantaneous phase, and instantaneous frequency as well as complicated
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attributes such as seismic trace inversion and AVO. The transform may not incorporate other data sources. For ex-
ample, trace inversion assumes other data sources, such as the seismic wavelet, the initial guess model, and con-
straints. However, for this analysis we still consider the inversion result to be an attribute of the seismic trace.

Complex seismic trace analysis by Taner(1979)

Transformations of data from one form to another are common in signal analysis, and various techniques are used
to extract significant information from time series (seismic data). Interpreting data from different points of view
often results in new insight and the discovery of relationships not otherwise evident. Analysis of seismic data as an
analytic signal, complex trace analysis, is a transform technique which retains local significance. Complex trace
analysis provides new insight, like Fourier transforms, and is useful in interpretation problems. Complex trace
analysis effects a natural separation of amplitude and phase information, two of the quantities (call “attributes™)
which are measured in complex trace analysis. The amplitude attribute is called “reflection strength.” The phase
information is both an attribute in its own right and the basis for instantaneous frequency measurement. Amplitude
and phase information are also combined in additional attributes, weighted average frequency and apparent polarity

Calculation of the quadrature trace

We give equivalent ways of defining £ () and f(¢), first in terms of Fourier integrals and then by convolution
in time domain using the Hilbert transform. The amplitude spectrum of the complex trace vanishes for @{0 and
has twice the magnitude for w)0. The phase ¢(@) is unchanged (except it is not defined for @(0). The complex
trace can thus be found by Fourier transforming the real trace, zeroing the amplitude for negative frequencies a
doubling the amplitude for positive frequencies, and then inverse Fourier transforming. And equivalent formula for
£ () is given by the Hilbert transform.

Basic definitions

Complex trace analysis treats a seismic trace f(#) as the real part of an analytical signal or complex trace,
F@t)=f(O)+ jf (t). The quadrature (also called conjugate or imaginary) component £ (¢) is uniquely deter-
minable from f(¢) if we require that f (¢) be determined from f(¢)by a linear convolution operation, and re-
duces to phasor representations if f(¢) is a sinusoid, that is, f (¢) = Asin(wt +8) if f(¢) = Acosn(wt +0) for
all real values of Aand @ and all @)0.

The use of the complex trace F(¢) makes it possible to define instantaneous amplitude, phase, and frequency in
ways which are logical extensions of the definitions of these terms for simple harmonic oscillation. Complex traces
can also be used in similarity calculations, enabling us to find more precisely the relative arrival times of a common
signal appearing on different traces.

The real seismic trace f(¢) can be expressed in terms of a time-dependent amplitude A(¢) and a time dependent
phase 8(t) as

f(&) = A(t)cosB(2) 1)
The quadrature trace £~ (¢) then is
J ()= A@®)sind(0) @
and the complex trace F(¢) is
F@)=f(O+Jf (0)=A@)e”" : €)

If f(¢t) and f () are known, one can solve for A(f) and 6(¢):

AQ =[O + 7O S F()] 4

‘and

0(t)=tan”'[f" )/ f ()] ®)
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A(?) is called “reflection strength”, and 8(¢) is called “instantaneous phase”.

The rate of phase change o the time-dependent phase gives a time-dependent frequency

4o _

7 a(r) (6

A more convenient way of computing the instantaneous frequency is to compute the derivative of the arctangent
function itself

w(t)=%{tan"[f'(t)/f(t)]} @)
which results in
o dfd(t) N0 df(t)
(1) = ®)

f (t)+f*2(t)

where the derivatives of f(¢)and f~ (¢) can be computed in convolutional form.

We also define a weighted average frequency () as

[” At - D)ot —T)L(r)dT
o(t) = )
[’ At -7)L(r)dr

where L(7) is a low-pass filter. Apparent polarity is defined as the sign of f(#) when A(f) has a local maxi-
mum. Positive or negative sign is assigned assuming a zero-phase wavelet and a positive or negative reflection co-
efficient, respectively.

With the success of 3D surveys has come the popularity of seismic attributes. Attributes are valuable for gaining
insight from the data particularly when displayed spatially over interpreted horizons. However, all the man attrib-
utes available are not independent pieces of information but, in fact, simply represent different ways of presenting a
limited amount of basic information. The key to success lies in selecting the most applicable attribute for the prob-
lem. Furthermore, statistical analysis using attributes must be based on understanding, not simply mathematical
correlation. Attributes are related to the fundamental information in seismic data: time, amplitude, frequency, and
attenuation. Most of the attributes we use are post-stack. The pre-stack attributes are principally derived from am-
plitude variations with offset (AVO) measurements.

Horizon attributes are extracted along a tracked horizon and thus benefit from the precision of machine auto-
trackers. The positional precision is typically around a guarter of a millisecond and the precision of the attribute
value somewhat comparable. Windowed attributes, on the other hand, use the sample values at, for example, 2 or 4
ms intervals. They may add up or average all the sample values to give a gross attribute, they may select one
unique attribute value, or a distribution or trend in the attribute values over the window may be calculated.

Time-derived attributes help to discern structural detail. Amplitude-derived and frequency-derived attributes ad-
dress problems for stratigraphy and reservoir properties. Amplitude attributes are here the most robust and useful,
but frequency attributes may help reveal additional geologic layering. The hybrid attributes are particularly interest-
ing because they contain elements of amplitude and frequency, and thus useful measurements of seismic character.

Petrophysical studies and seismic modelling, of course, are other sources of understanding. Such understanding is necessary to
build confidence in observed correlations with reservoir parameters and must be part of all attribute analysis projects.

3. Methodology

Seismic guided estimation of rock or reservoir fluid properties measured by or computed from logs requires a sys-
tematic multi-step analysis, which is subsequent to normal processing of the seismic and log data. The objective is
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to identify which seismic attributes in a given dataset correlate well to which log properties, and then to use those
attributes to assist the log property mapping.

After extracting seismic attributes from 3D seismic survey, the step that is selecting the best seismic attributes is
needed. Sine using all attributes is computationally unfeasible and labour intensive, fuzzy logic is used to select the
most statistically significant attributes for developing regression equations for individual reservoir properties. And
then we can integrate seismic attributes and log properties. In the linear mode, the regression methods are used. But
non-linear regressions were used, as individual attributes had low correlation coefficients when cross-plotted with
log properties, and neural network architectures were developed to relate the selected attributes to each property.

Seismic data Well logging data

I

Seismic attributes

“Artificial Neural

. "Network.

Core analysis
data

- Predictive
Reservoir property

Fig. 1. Flow chart of methodology.

Fuzzy curve analysis

We use fuzzy curves for identification of the significant input variables. Consider a multiple-input, single-output
system for which we have input-output data with possible extraneous inputs. We wish to determine the significant
inputs. We call the input candidates x;(i =1,2,...,n), and the output variable y . Assume that we have m data
points available and that x, (k =1,2,...,m) are the ith coordinates of each of the m data points. For each input
variable x;, we can plot the m data pointsin x; —y space. And for every point (x,,y,) in x;, —y space, we draw
a fuzzy membership function for the input variable x; defined by

Xig —X;

Fp(x)= CXP(—(T)Z), k=123,..m. (10)

Each pair of F;, (x;) and the corresponding y, provides a fuzzy rule for y with respect to x,. The rule is repre-
sented as “if x; is F, (x;), then y isy,.” F,(x;) is the input variable fuzzy membership function for x, corre-
sponding to the data pointk . F, (x;) can be any fuzzy membership function, including triangle, trapezoidal, Gaus-
sian, and others. Here we use Gaussians. We typically take b as about 10% of the length of the input interval of x; .
For m data points, we have m fuzzy rules for each input variable.
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We use centroid defuzzification to produce a fuzzy curve FC,; for each input variable x; .

3 Fy ) ey,
FC,(x)=(—— ) an

ZFik (x;)

If the fuzzy curve for given input is flat, then this input has little influence in the output data and it is not a signifi-
cant input. And if the range of a fuzzy curve is about the range of the output data y , then the input candidate x; is

important to the output variable. The fuzzy curve tells us that the output is changing when x; is changing. We rank

the importance of the input variables x, according to the range covered by their fuzzy curves.
Linear regression (Statistical method)

Next step is to determine a relationship between seismic attributes and log properties. Given a particular attribute
of the seismic data, the simplest procedure for deriving the desired relationship between log properties and seismic
attribute is to cross-plot the two. The assumption is that the target log has been integrated to travel-time at the same
sample rate as the seismic attribute. Effectively, this integration reduces the target log to the same resolution as the
attribute, which is usually significantly coarser than the log property. Each point in the cross-plot consists of a pair
of numbers corresponding to a particular time sample.

The extension of the conventional linear analysis to multiple attributes (multivariate linear regression) is straight-

forward. Assume, for simplicity, that we have three attributes. At each time sample, the target log is modelled by
the linear equation.

L) = @y + @, 4 (1) + 0,4, (1) + 0,4, (1) (12)

The weights in this equation may be derived by minimizing the mean-squared prediction error, as extended from
equation (13)
N
E? :%Z(l‘i—wo_wlAli_szZi—a)?aAh‘)z (13)
i=1

Note that the linear requirement may be relaxed somewhat by applying a non-linear transform to either the target
data or the attribute data or both. And several limitations inhibit multivariate regression techniques, many arising
from the inexact nature of the relationship between petrophysical variables. Conventional parametric regression
requires a priori assumptions regarding functional relationships between the independent and dependent variables.
Complex underlying physical relationships are not known in advance, making traditional multiple regression tech-
niques inadequate, leading to biased estimates. Non-parametric transformations, however, generate regression rela-
tions in a flexile data-defined manner and in doing so let the data itself suggest the functionalities. They have been
developed to offer a much more flexible data analysis tool when exploring the underlying relationship between in-
dependent and dependent variables.

The non-parametric regression approach proposed by Breiman and Friedman, and refined by Xue, et al, provides
exactly such a “non-biased” mechanism for the purpose of establishing the minimum error relationship between the
dependent and independent variables. The method of Alternating Conditional Expectation (ACE) is based on the
concept of developing an optimal transformation of each variable-both the dependent variable, as well as the inde-
pendent variable(s)

Non-linear regression (Artificial neural network)

A neural network is a series of layers with nodes and weights that represent complex relationships among input
and output variables. The first layer has input nodes representing the input variables (independent variables) speci-
fied by the problem. The node of a hidden layer uses the sum of the weighted outputs of previous layer and sigmoid
function to provide output for the nodes in the subsequent hidden layer. The number of nodes in each layer and the
weights are determined by trials and by optimisation. The objective of the neural network is to obtain optimal
weights to give a best value for the nodes (the dependent variable) of the output layer.

The advantages of neural network approach are several. It does not require an explicit functional relationship be-
tween the input and output variables. It can be trained from past available data to learn and approximate the non-
linear relationships to any degree of accuracy. It is applicable to multivariate systems. One of the significant draw-
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backs of neural network approach is the input nodes must be specified a priori. The type of input variables and the
optimal number of input variables can not easily be determined from neural network analysis,

4. Results

The methodology suggested in this paper is applied to a synthetic velocity model. Fig.1 is a velocity map showing
the locations of the development wells and test locations. The wells are located at 1000m(well A), 2000m(well B),
2500m(well C), and 3500m(well D) The test locations are located at 1500m(T#1) and 3000m(T#2).

Fig. 2. Synthetic velocity model.

We can extract the seismic attributes such as seismic trace, reflection strength, pseudo sonic logging data, instan-
taneous phase and instantaneous frequency from each well. And fuzzy curve analysis is used to select the best de-
scribing data among these attributes. Table.1 is the result of fuzzy curve analysis. Well A and B are grouping to
group I and well C and D are group 11, so T#1 can be derived from the results of group I and T#2 from groupII .

Table 1. Sonic well logs versus Seismic attributes fuzzy ranking.

Well site Attributes Range CC Rank
Seismic trace 0.54 0.90 145
Reflection strength 0.55 0.93 1.48
I Pseudo sonic log 0.92 0.99 1.91
Instantaneous phase 0.26 -0.73 0.99
Instantaneous frequency 0.20 0.87 1.09
Seismic trace 0.59 0.92 1.51
Reflection strength 0.57 : 0.94 1.51
I Pseudo sonic log -1 092 0.99 191
Instantaneous phase 0.28 -0.81 1.09
Instantaneous frequency 0.27 0.95 1.22

As shown in Table.1, we can use seismic trace, reflection strength, pseudo sonic log, and instantaneous frequency
as seismic attributes.

These selected attributes and well logging data (sonic logging data) can be made the relationship by using multi-
ple regressions in each group. To recognize how well predicted sonic logging data from relationship can be similar
with sonic logging data, we are cross-plotting these two data. The results are presented in Fig. 3. The correlation
coefficient at well A is 0.96(0.98 at well B, 0.96 at well C, and 0.96 at well D). As a result, we can know the rela-
tionship is valid which is derived from multiple regressions and describe the distribution of predicted sonic logging
data.
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Fig. 3. Cross-plotting of predicted and actual sonic logging data at wells.

Fig. 4 is predicted sonic logging data at T#1 and T#2 from each relationship and Fig. 5 is a map of predicted sonic
logging data and it is correspond to Om from 4000m.
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Fig. 4. Predicted sonic logging data at test locations.
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Fig. 5. Predicted sonic logging data of entire study area.

5. Summary

This paper suggests the methodology which would be estimated the reservoir property by integrating the seismic
attributes and well data. Before the seismic attributes and well data are integrated, stepwise regression or fuzzy
curve analysis can be used for selecting the best describe attributes. And then we can integrate the well data and
selected seismic attributes, and find out their relationship. To know the relationship we can use statistical method
such as regression or artificial neural network method properly. According to this methodology we can apply to a
synthetic velocity model. We can use these seismic attributes such as seismic trace, reflection strength,
instantaneous frequency, and pseudo sonic logging data for integrating well logging data (sonic logging) with.
Relationship between well logging data and selected attributes can be presented by multiple regressions, and the
predicted well logging data are similar with actual well logging data. Therefore, it is possible to predict the
reservoir property guided by seismic attributes if a relationship of seismic attributes and well data can be defined.
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