• Title/Summary/Keyword: sedimentary succession

Search Result 20, Processing Time 0.028 seconds

Gugokri-Nongdari Sedimentary Succession and Environment in the Southwestern Eumsung Basin (Cretaceous), Korea (백악기 음성분지 남서부의 구곡리-농다리 퇴적층과 퇴적환경)

  • Ryang, Woo-Hun
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.545-554
    • /
    • 2018
  • The Cretaceous Eumsung (Eumseong) Basin is a pull-apart basin, formed along a series of the Gongju strike-slip faults trending NE-SW. The Nongdari-Meer forest of the Gugokri area in the southwestern part of the basin is comprised of thick purple mudstone, intercalating conglomerate, pebbly sandstone, and green mudstone beds. The succession mainly consists of seven sedimentary facies: stratified conglomerate (C2), conglomerate encased in siltstone (CE), stratified pebbly sandstone encased in siltstone (PSE2), purple sandy siltstone (Zp), green sandy siltstone (Zg), purple mudstone (Mp), and green mudstone (Mg). Sedimentary environment is mainly indicative of alluvial-plain setting in an alluvial-to-lacustrine sedimentary system, developed in the southwestern part of the basin. Geological survey was fulfilled in succession of the Gugokri sedimentary system using 1:5000 topographic map, which resulted in a geological route map. This study newly suggested that there be fluvial systems showing ENE and NNE trends in the study area, based on data of palaeocurrent direction and sedimentary characteristics in new outcrops of the forest. The study also revised the precedent sedimentation model of the Gugokri system.

The Responses of Elementary Teachers and the Development of Teaching Materials for Geological Fieldwork in the Area of Mai Mountain (전북 마이산 일대의 야외지질 교수-학습자료 개발 및 초등 교사들의 반응)

  • Noh, Beyong-Seob;Ryang, Woo-Hun;Cho, Kyu-Seong
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.869-882
    • /
    • 2009
  • The purpose of this study is to develop teaching materials for geological fieldwork around the area of Mai Mountain and to analyze the responses of elementary teachers as to the application of fieldwork. The site of geological fieldwork, Mai Mountain area, is located around the Maisan Provincial Park of Jinan-gun, Jeonbuk Province where a large-scale sedimentary succession in the era of Cretaceous is shown. It provides an easy access to distinct outcrops around the provincial park. The sequences reveal different kinds of sedimentary rocks and various sedimentary structures, and provide information of the lacustrine sedimentary environments of the Cretaceous. In addition, metamorphic rocks and structures formed at the margin of the basement and the basinal fault as well as a sedimentary sequence of the Quaternary formed in a modern fluvial stream are observable. A 4-step fieldwork procedure was applied to a group of 13 elementary teachers. Through questionnaire and interview, results showed that (a) the geological fieldwork and materials were effective to positively increase science teaching from the participating teachers, and that (b) there is a great need of the development of various fieldwork sites and teaching materials that promote active fieldwork for students to have their lived experience and knowledge gain. It is suggested that teacher education programs be able to provide active fieldwork for elementary inservice teachers to properly carry out a geological fieldwork for their students.

Vegetation Succession and Rate of Topsoil Development on Shallow Landslide Scars of Sedimentary Rock Slope Covered by Volcanic Ash and Pumice, Southern Kyushu, Japan

  • Teramoto, Yukiyoshi;Shimokawa, Etsuro;Ezaki, Tsugio;Kim, Suk-Woo;Jang, Su-Jin;Chun, Kun-Woo
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.196-204
    • /
    • 2016
  • In this study, vegetation succession and the rate of consequent topsoil development were investigated in shallow landslide scars of sedimentary rock slopes covered by volcanic ashes and pumice in Kagoshima prefecture, Japan. Seven shallow landslide scars of different ages were selected as study areas. In the initial period after the occurrence of a shallow landslide, deciduous broad-leaved trees such as Mallotus japonicus or Callicarpa mollis were occupied in the areas. Approximately 30 years after the landslide, evergreen broad-leaved trees such as Cinnamomum japonicum invaded in the areas, already existed present deciduous broad-leaved trees. After 50 years, the summit of the canopy comprised evergreen broad-leaved trees such as Castanopsis cuspidata var. sieboldii and Machilus thunbergii. Moreover, the diversity of vegetation invading the site reached the maximum after 15 years, followed by a decrease and stability in the number of trees. The total basal areas under vegetation increased with time. It was concluded that the vegetation community reaches the climax stage approximately 50 years after the occurrence of a shallow landslide in the study areas, in terms of the Fisher-Williams index of diversity (${\alpha}$) and the prevalence of evergreen broad-leaved trees. Moreover, according to the results of topsoil measurement in the study areas, the topsoil was formed at the rate of 0.31 cm/year. The development of topsoil usually functions to improve the multi-faceted functions of a forest. However, when the increased depth of topsoil exceeds the stability threshold, the conditions for a shallow landslide occurrence are satisfied. Therefore, we indicated to control the depth of topsoil and strengthen its resistance by forest management in order to restrain the occurrence of shallow landslides.

An Analog Experimental Model of the Formation Mechanism of Sedimentary Basins (퇴적분지형성 메커니즘에 관한 아날로그 모델 실험)

  • Kim, Woo-Seok;Jung, Jahe
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.397-409
    • /
    • 2018
  • Izumi sedimentary basin (ISB), west of Shikoku, Japan, is widely distributed across the western side of the Sakuragi Bend of the Japan Median Tectonic Line (MTL). It is not obvious how the ISB formed, but this feature is similar to an asymmetric pull-apart basin. The stratigraphic succession and tuff layers show that ages tend to decrease toward the Sakuragi Bend. We investigate whether the ISB is an asymmetric pull-apart basin using analogue model experiments with running sand. A pull-apart basin of length 60 cm and width 20 cm is formed, and secondary normal faults appear on the surrounding surface. A cross-section parallel to the direction of displacement shows that the stratigraphic succession of the pull-apart basin becomes younger toward the releasing bend. A listric normal fault, which has the opposite dip to the master fault, is observed in a cross-section perpendicular to the direction of displacement. These results are consistent with the observed properties of the ISB west of Shikoku, thereby supporting the possibility that the ISB is an asymmetric pull-apart basin.

Development and Application of Teaching Materials for Geological Fieldwork in the Area of Bongwhabong, Buan-gun, Jeonbuk, Korea (전북 부안군 봉화봉 일대의 야외지질 학습자료 개발 및 적용)

  • Park, Jae-Moon;Ryang, Woo-Hun;Cho, Kyu-Seong;Kim, Seung-Bum
    • Journal of the Korean earth science society
    • /
    • v.30 no.7
    • /
    • pp.883-896
    • /
    • 2009
  • This study is to develop teaching materials for geological fieldwork around Bonghwabong area in the national park of the Byeonsan Peninsula, Buangun, Jeonbuk. The developed materials are applied in the geological fieldwork of science high school students to maximize the effects of use. The sedimentary succession of the Bonghwabong area in the Cretaceous age, Mesozoic, represents large-scale and distinctive sedimentary structures on the sea cliffs, which are utilized as teaching materials for earth science fieldwork. The area of Bonghwabong also comprises various geological structures related to advanced learning programs as well as those within the curriculum of high school earth science. A five-step fieldwork model was applied to 15 students in clubs related to earth science in a science high school. This study used a qualitative methodology to analyze students' responses that were gathered about the process of fieldwork. During the activity, a qualitative analysis was carried out by using discussions and interviews both with the students and the teacher. Results indicated that the fieldwork activity using teaching materials was effective in helping the students improve their self-directed learning and practical understanding of earth science.

Thin-bedded, Fine-grained Lacustrine Turbidite Facies on the Northern Coast of Jindo and the Adjacent Area: Density underflow-induced, Ash-rich Turbidity Current Deposits

  • Chang Tae Soo;Chun Seung Soo
    • 한국석유지질학회:학술대회논문집
    • /
    • spring
    • /
    • pp.29-37
    • /
    • 1998
  • The sedimentary succession on the northern coast of Jindo and the adjacent area comprises the thinly bedded, fine-grained deposits of an epiclastic sandstone, siltstone, black shale/mudstone, and cherty mudstone (ca. 200m in vertical thickness), which are interpreted as the finely stratified turbidites mainly by density underflow-induced currents. Most deposits can be divided into eight facies: thin-bedded, ash-rich massive sandstone layer (mS), graded and laminated mudstone layer (glM), graded mudstone layer with ripple lamination (rM), laminated and graded siltstone layer (lgZ), finely laminated black shale layer (IBS), structureless mudstone layer (mM), thin-bedded cherty mudstone layer (lCM), and contorted and laminated mudstone layer (dlM), The thin-bedded, ash-rich sandstone facies is interpreted to be deposited from high-density turbid underflows during a relatively large flooding. Most thinly bedded mudstone facies would be deposited from low-density turbid underflows (turbidity currents) with some different hydrodynamic condition and sediment concentration during the high discharge of river water. Whereas the structureless mudstone facies may result from raining down of suspended sediment intermittently supplied by overflows and interflows. From the entire succession, graded and laminated mudstone layers interbedded with thin-bedded, ash-rich massive sandstone are dominant in the lower part of the succession, and graded mudstone layers with ripple lamination ripple lamination occur mainly in the middle part of it. On the other hand, iaminated/raded siltstone and contorted/laminated mudstone layers prevail in the upper part. The transition of facies association is suggestive of the continuous change of main depositional setting from basin plain to lower slope, which could be due to the movement of depocenter by the increase of sediment supply (volcanic activity).

  • PDF

Records of Holocene Environmental Changes in Terrestrial Sedimentary Deposits on King George Island, Antarctica; A Critical Review

  • Tatur A.;Valle R. Del;Barczuk A.;Martinez-Macchiavello J.
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.531-537
    • /
    • 2004
  • In this study we discuss some problems that emerged from paleolimnological and paleontological investigations of terrestrial Holocene ecosystems on King George Island (South Shetland Islands) conducted by an Argentine-Polish research group. Biological and geochemical markers commonly used in standard analytical procedures are considered insufficient in tracing overlapping records of past environmental changes preserved in peat banks, lake sediments and ornithogenic remnants. Records that might be explained by predictable natural events (related to glacio-isostatic uplift of land), roughly predictable events (ecological succession), or unpredictable events (volcanic eruptions or accidental destruction of aquatic moss) may overlap or interfinger one with another providing that signals of regional and/or global climatic changes, are hardly identifiable. A more sophisticated and more selective methods are recommended to do discrimination between records of local and regional/golbal processes in studies on Holocene climatic history of the South Shetland Islands.

A Geoacoustic Model at the SSDP-101 Long-core Site in the Korea Strait

  • Woo-Hun Ryang;Seong-Pil Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.4
    • /
    • pp.264-274
    • /
    • 2023
  • The Korea Strait comprises a continental shelf in a shallow sea that experienced glacio-eustastic sea-level changes during the Quaternary period. A long core of 76.6 m in length was acquired at the South Sea Drilling Project site (SSDP-101; 34°19.666'E and 128°16.335'N) with a 60 m water deep. The uppermost massive sand beds were interpreted as sandy sediments of the nearshore marine sand ridge in the shallow sea during the transgression of sea level, whereas the lower parts of alternating sandy and muddy beds were interpreted as deposits in marsh, estuary, and tidal flat environments. A three-layered geoacoustic model was reconstructed for the sedimentary succession in the high-resolution seismic profile based on a 140-grain size and sediment type of core SSDP-101. For the actual underwater simulation and experiments, the in-situ P-wave speeds were calculated using the sound speed ratio of the Hamilton method.

Modeling the long-term vegetation dynamics of a backbarrier salt marsh in the Danish Wadden Sea

  • Daehyun Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.49-62
    • /
    • 2023
  • Background: Over the past three decades, gradual eustatic sea-level rise has been considered a primary exogenous factor in the increased frequency of flooding and biological changes in several salt marshes. Under this paradigm, the potential importance of short-term events, such as ocean storminess, in coastal hydrology and ecology is underrepresented in the literature. In this study, a simulation was developed to evaluate the influence of wind waves driven by atmospheric oscillations on sedimentary and vegetation dynamics at the Skallingen salt marsh in southwestern Denmark. The model was built based on long-term data of mean sea level, sediment accretion, and plant species composition collected at the Skallingen salt marsh from 1933-2006. In the model, the submergence frequency (number yr-1) was estimated as a combined function of wind-driven high water level (HWL) events (> 80 cm Danish Ordnance Datum) affected by the North Atlantic Oscillation (NAO) and changes in surface elevation (cm yr-1). Vegetation dynamics were represented as transitions between successional stages controlled by flooding effects. Two types of simulations were performed: (1) baseline modeling, which assumed no effect of wind-driven sea-level change, and (2) experimental modeling, which considered both normal tidal activity and wind-driven sea-level change. Results: Experimental modeling successfully represented the patterns of vegetation change observed in the field. It realistically simulated a retarded or retrogressive successional state dominated by early- to mid-successional species, despite a continuous increase in surface elevation at Skallingen. This situation is believed to be caused by an increase in extreme HWL events that cannot occur without meteorological ocean storms. In contrast, baseline modeling showed progressive succession towards the predominance of late-successional species, which was not the then-current state in the marsh. Conclusions: These findings support the hypothesis that variations in the NAO index toward its positive phase have increased storminess and wind tides on the North Sea surface (especially since the 1980s). This led to an increased frequency and duration of submergence and delayed ecological succession. Researchers should therefore employ a multitemporal perspective, recognizing the importance of short-term sea-level changes nested within long-term gradual trends.

Changes in Macrobenthic Community Structure on Gunsan Tidal Flat after the Closing of the Saemangeum 4th Dyke (새만금 4호 방조제 연결 후 군산갯벌 대형저서동물군집 변화)

  • Koo, Bon-Joo;Shin, Sang-Ho;Woo, Han-Jun;Kim, Eun-Soo;Je, Jong-Geel
    • Ocean and Polar Research
    • /
    • v.30 no.4
    • /
    • pp.497-507
    • /
    • 2008
  • With the reduction of tidal currents by the closing of the Saemangeun 4th dyke, sedimentary environments on the Gunsan tidal flat, the nearest inner flat from the 4th dyke, has been severely changed, which might affect macrobenthic assemblages on the habitats. In order to investigate changes in macrobenthic community structure on Gunsan tidal flat, field surveys were seasonally conducted at seven stations from April 2002 to November, 2005. Sedimentary facies on the study area were shifted into muddominant facies. The fine sediment has been greatly deposited on the tidal flat with accumulation of organic materials after closing the water passage of 4th dyke section. These drastic variations in environments gave rise to change in macrobenthic community structure. Since the closure of the 4th dyke, the number of species of macrobenthos has gradually decreased. And the filter feeders and sand-favored species such as Urothoe convexa, Macrophthalmus dilatatus, Umbonium thomasi, and Mactra veneriformis have been replaced by the deposit feeders such as Macrophthalmus japonicus and Ilyoplax pingi. MDS ordination based on Bray-Curtis similarity from forth-root transformed species abundance data showed that the macrobenthic communities have passed through three succession stages from 2002 to 2005. During the third stage of 2005 opportunistic species such as Prionospio japonica, Heteromastus filiformis and Sinocorophium sinensis increased in population on the tidal flat.