• Title/Summary/Keyword: secondary physics

Search Result 214, Processing Time 0.025 seconds

Identification of ginseng root using quantitative X-ray microtomography

  • Ye, Linlin;Xue, Yanling;Wang, Yudan;Qi, Juncheng;Xiao, Tiqiao
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.290-297
    • /
    • 2017
  • Background: The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ, and three-dimensional quantitative imaging properties. Methods: The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. Results: The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. Conclusion: This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

Instability of Anthocyanin Accumulation in Vitis vinifera L. var. Gamay Freaux Suspension Cultures

  • Qu Junge;Zhang Wei;Yu Xingju;Jin Meifang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.155-161
    • /
    • 2005
  • The inherent instability of metabolite production in plant cell culture-based bioprocessing is a major problem hindering its commercialization. To understand the extent and causes of this instability, this study was aimed at understanding the variability of anthocyanin accumulation during long-term subcultures, as well as within subculture batches, in Vitis vinifera cell cultures. Therefore, four cell line suspensions of Vitis vinifera L. var. Gamay Freaux, A, B, C and D, originated from the same callus by cell-aggregate cloning, were established with starting anthocyanin contents of $2.73\;\pm\;0.15,\;1.45\;\pm\;0.04,\;0.7\;\pm\;0.024\;and\;0.27\;\pm\;0.04$CV (Color Value)/g-FCW (fresh cell weight), respectively. During weekly subculturing of 33 batches over 8 months, the anthocyanin biosynthetic capacity was gradually lost at various rates, for all four cell lines, regardless of the significant difference in the starting anthocyanin content. Contrary to this general trend, a significant fluctuation in the anthocyanin content was observed, but with an irregular cyclic pattern. The variabilities in the anthocyanin content between the subcultures for the 33 batches, as represented by the variation coefficient (VC), were 58, 57, 54, and $84\%$ for V. vinifera cell lines A, B, C and D, respectively. Within one subculture, the VCs from 12 replicate flasks for each of 12 independent subcultures were averaged, and found to be $9.7\%$, ranging from 4 to $17\%$. High- and low-producing cell lines, VV05 and VV06, with 1.8-fold differences in their basal anthocyanin contents, exhibited different inducibilities to L-phenylalanine feeding, methyl jasmonate and light irradiation. The low-producing cell line showed greater potential in enhanced the anthocyanin production.

Plasma source ion implantations for shallow $p^+$/n junction

  • Jeonghee Cho;Seuunghee Han;Lee, Yeonhee;Kim, Lk-Kyung;Kim, Gon-Ho;Kim, Young-Woo;Hyuneui Lim;Moojin Suh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.180-180
    • /
    • 2000
  • Plasma source ion implantation is a new doping technique for the formation of shallow junction with the merits of high dose rate, low-cost and minimal wafer charging damage. In plasma source ion implantation process, the wafer is placed directly in the plasma of the appropriate dopant ions. Negative pulse bias is applied to the wafer, causing the dopant ions to be accelerated toward the wafer and implanted below the surface. In this work, inductively couples plasma was generated by anodized Al antenna that was located inside the vacuum chamber. The outside wall of Al chamber was surrounded by Nd-Fe-B permanent magnets to confine the plasma and to enhance the uniformity. Before implantation, the wafer was pre-sputtered using DC bias of 300B in Ar plasma in order to eliminate the native oxide. After cleaning, B2H6 (5%)/H2 plasma and negative pulse bias of -1kV to 5 kV were used to form shallow p+/n junction at the boron dose of 1$\times$1015 to 5$\times$1016 #/cm2. The as-implanted samples were annealed at 90$0^{\circ}C$, 95$0^{\circ}C$ and 100$0^{\circ}C$during various annealing time with rapid thermal process. After annealing, the sheet resistance and the junction depth were measured with four point probe and secondary ion mass spectroscopy, respectively. The doping uniformity was also investigated. In addition, the electrical characteristics were measured for Schottky diode with a current-voltage meter.

  • PDF

Preparation and Structure Properties of LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 Perovskites

  • Kareem Ali Jasim;Hind Abdulmajeed Mahdi;Rafah Ismael Noori;Marwa Ayad Abdulmajeed
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.367-371
    • /
    • 2023
  • In this study we examine variations in the structure of perovskite compounds of LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 synthesized using the solid state reaction method. The samples' compositions were assessed using X-ray fluorescence (XRF) analysis. The La: Ba: Ca: Cu ratios for samples LaBa2Cu2O9, LaBa22CaCu3O12 and LaBa2Ca2Cu5O15 were found by XRF analysis to be around 1:2:0:2, 1:2:1:3, and 1:2:2:5, respectively. The samples' well-known structures were then analyzed using X-ray diffraction. The three samples largely consist of phases 1202, 1213, and 1225, with a trace quantity of an unknown secondary phase, based on the intensities and locations of the diffraction peaks. According to the measured parameters a, b, and c, every sample has a tetragonal symmetry structure. Each sample's mass density was observed to alter as the lead oxide content rose. Scanning electron microscope (SEM) images of the three phases revealed that different Ca-O and Cu-O layers can cause different grain sizes, characterized by elongated thin grains, without a preferred orientation.

Secondary Action based Dynamic Jiggle-Bone Animation (이차 행동 기반의 다이나믹 지글 본 애니메이션)

  • Park, Sung-Jun;An, Deug-Yong;Oh, Seong-Suk
    • Journal of Korea Game Society
    • /
    • v.10 no.1
    • /
    • pp.127-134
    • /
    • 2010
  • The secondary animation technology for the detailed objects including accessories is being studied and applied to the modern game development. The jiggle-bone deformer is used for 3D graphic tools as a technology to create the animation of these objects, but it is disadvantageous in that the real-time modification is difficult and the graphic developers need much time. The secondary animation can also be realized using a physical game engine, but the cost of animation process increases when many objects in a scene of a game are rendered, and it has a low efficiency. This paper proposes a dynamic jiggle-bone animation algorithm, which can be modified in real time and has the similar effect to the physical game engine. To evaluate the performance of the proposed algorithm, tests were conducted with varied number of bones and for the case of one scene with the animation of many jiggle-bones, and the results were adjudged relatively efficient.

Bragg-curve simulation of carbon-ion beams for particle-therapy applications: A study with the GEANT4 toolkit

  • Hamad, Morad Kh.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2767-2773
    • /
    • 2021
  • We used the GEANT4 Monte Carlo MC Toolkit to simulate carbon ion beams incident on water, tissue, and bone, taking into account nuclear fragmentation reactions. Upon increasing the energy of the primary beam, the position of the Bragg-Peak transfers to a location deeper inside the phantom. For different materials, the peak is located at a shallower depth along the beam direction and becomes sharper with increasing electron density NZ. Subsequently, the generated depth dose of the Bragg curve is then benchmarked with experimental data from GSI in Germany. The results exhibit a reasonable correlation with GSI experimental data with an accuracy of between 0.02 and 0.08 cm, thus establishing the basis to adopt MC in heavy-ion treatment planning. The Kolmogorov-Smirnov K-S test further ascertained from a statistical point of view that the simulation data matched the experimentally measured data very well. The two-dimensional isodose contours at the entrance were compared to those around the peak position and in the tail region beyond the peak, showing that bone produces more dose, in comparison to both water and tissue, due to secondary doses. In the water, the results show that the maximum energy deposited per fragment is mainly attributed to secondary carbon ions, followed by secondary boron and beryllium. Furthermore, the number of protons produced is the highest, thus making the maximum contribution to the total dose deposition in the tail region. Finally, the associated spectra of neutrons and photons were analyzed. The mean neutron energy value was found to be 16.29 MeV, and 1.03 MeV for the secondary gamma. However, the neutron dose was found to be negligible as compared to the total dose due to their longer range.

Theoretical Studies of the Electrical Discharge Characteristics of Sulfur Hexafluoride

  • Radmilovic-Radjenovic, Marija;Radjenovic, Branislav
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.288-294
    • /
    • 2017
  • This paper contains results of the theoretical studies of the electrical breakdown properties in sulfur hexafluoride. Since the strong interaction of high-energy electrons with the polyatomic sulfur hexafluoride molecule causes their rapid deceleration to the lower energy of electron capture and dissociative attachment, the breakdown is only possible at relatively high field strengths. From the breakdown voltage curves, the effective yields that characterize secondary electron productions have been estimated. Values of the effective yields are found to be more consistent if they are derived from the experimentally determined values of the ionization coefficient and the breakdown voltages. In addition, simulations were performed using an one-dimensional Particle-in-cell/Monte Carlo collision code. The obtained simulation results agree well with the available experimental data with an error margin of less than 10% over a wide range of pressures and the gap sizes. The differences between measurements and calculations can be attributed to the differences between simulation and experimental conditions. Simulation results are also compared with the theoretical predictions obtained by using expression that describes linear dependence of the breakdown voltage in sulfur hexafluoride on the pressure and the gap size product.

Distribution of natural radioactivity in soil and date palm-pits using high purity germanium radiation detectors and LB-alpha/beta gas-flow counter in Saudi Arabia

  • Shayeb, Mohammad Abu;Baloch, Muzahir Ali
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1282-1288
    • /
    • 2020
  • In the first study, the Radon emanation and radiological hazards associated with radionuclides in soil samples, collected from 9 various date palm farms located in 3 different districts in Saudi Arabia were determined through a high purity Germanium (HPGe) gamma-ray spectrometer. The estimated average values of Radon emanation coefficient and Radon mass exhalation rate for soil samples were 0.535 ± 0.016 and 50.063 ± 7.901 mBqkg-1h-1, respectively. The annual effective dose of radionuclides in all sampling locations was found to be lower than UNSCEAR's recommended level of 0.07 mSvy-1 for soil in an outdoor environment. In the secondary study, gross α and gross β activities in soil and date palm pits samples were measured by a low background α/β counting system. Average values of gross α and gross β activities in soil and date palm pits samples were 5.761 ± 0.360 Bqkg-1, 38.219 ± 8.619 Bqkg-1 and 0.556 ± 0.142 Bqkg-1, 24.266 ± 1.711 Bqkg-1, respectively.

Line Image Correction of the Positron Camera in the Secondary Beam Course of HIMAC

  • Iseki, Yasushi;Mizuno, Hideyuki;Kanai, Tatsuaki;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Suda, Mitsuru;Tomitani, Takehiro;Urakabe, Eriko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.195-198
    • /
    • 2002
  • A positron camera, consisting of a pair of Anger-type scintillation detectors, has been developed for verifying the ranges of irradiation beams in heavy-ion radiotherapy. Images obtained by a centroid calculation of photomultiplier outputs exhibit a distortion near the edge of the crystal plane in an Anger-type scintillation detector. The images of a $\^$68/Ge line source were detected and look-up tables were prepared for the position correction parameters. Asymmetry of the position distribution detected by the positron camera was prevented with this correction. As a result, a linear position response and a position resolution of 8.6 mm were obtained over a wide measurement field.

  • PDF

Estimation of Nuclear Interaction for $^{11}C$ Cancer Therapy

  • Maruyama, Koichi;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Suda, Mitsuru;Mizuno, Hideyuki;Iseki, Yasushi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.199-201
    • /
    • 2002
  • Cancer therapy using high-energy $^{12}$ C ions is successfully under way at HIMAC, Japan. An alternative beam to $^{12}$ C is $^{11}$ C ions. The merit of $^{11}$ C over $^{12}$ C is its capability for monitoring spatial distribution of the irradiated $^{11}$ C by observing the $\beta$$^{+}$ decay with a good position resolution. One of the several problems to be solved before its use for therapy is the amount of nuclear interaction that deteriorates the dose concentration owing to the Bragg curve. Utilizing the dedicated secondary beam course for R&D studies at HIMAC, we measured the total energy loss of $^{11}$ C ions in a scintillator block that simulates the soft tissue in human bodies. In addition to the total absorption $^{11}$ C peak, non-negligible bump-shaped contribution is observed in the energy spectrum. The origin of the bump contribution can be nuclear interaction of the incident $^{11}$ C ions with hydrogen and carbon atoms. Further studies to reduce the ambiguity in dose distribution are mentioned.

  • PDF