• Title/Summary/Keyword: secondary metabolites

Search Result 545, Processing Time 0.026 seconds

Development of Useful Secondary Product Through Plant Cell Culture(I) (식물세포 배양 및 융합을 통한 유용물질 개발(I))

  • Kim, K.U.;Park, Y.G.;Kwak, S.H.
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.154-159
    • /
    • 1995
  • Water extracts from Polygonum aviculare and Salix koreansis markedly inhibited the germination of lettuce and rice seeds, indicating the presence of biologically active substances. The biochemical substances such as salicylic and+vanillic acid, tannic acid + gallic acid, p-coumaric acid, p-cressol, sinapic acid and catechol etc. belonging to phenolic compounds were detected in the cultured cells, suggesting that the secondary metabolites can be synthesized in plant cell and tissue culture. In addition, fatty acid like linolenic acid and organic acid such as oxalic acid were presented in the highest amount, 3.7 mg/g and 14.288 mg/g, respectively, which seem to be related to exhibiting phytotoxicity of P. aviculare. Petroleum ether extract exhibited another potential relating to inhibitory effect which needs further investigation. Calli from two plant sources were easily introduced by uses of 1.0 mg/l of 2.4-D and 0.1 to 0.2 mg/l of BAP in MS basal medium which can be implemented for a large scale production through cell culture.

  • PDF

Evaluation of Matrix Effects in Quantifying Microbial Secondary Metabolites in Indoor Dust Using Ultraperformance Liquid Chromatographe-Tandem Mass Spectrometer

  • Jaderson, Mukhtar;Park, Ju-Hyeong
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.196-204
    • /
    • 2019
  • Background: Liquid chromatography-tandem mass spectrometry (LC-MSMS) for simultaneous analysis of multiple microbial secondary metabolites (MSMs) is potentially subject to interference by matrix components. Methods: We examined potential matrix effects (MEs) in analyses of 31 MSMs using ultraperformance LC-MSMS. Twenty-one dust aliquots from three buildings (seven aliquots/building) were spiked with seven concentrations of each of the MSMs ($6.2pg/{\mu}l-900pg/{\mu}l$) and then extracted. Another set of 21 aliquots were first extracted and then, the extract was spiked with the same concentrations. We added deepoxy-deoxynivalenol (DOM) to all aliquots as a universal internal standard. Ten microliters of the extract was injected into the ultraperformance LC-MSMS. ME was calculated by subtracting the percentage of the response of analyte in spiked extract to that in neat standard from 100. Spiked extract results were used to create a matrix-matched calibration (MMC) curve for estimating MSM concentration in dust spiked before extraction. Results: Analysis of variance was used to examine effects of compound (MSM), building and concentration on response. MEs (range: 63.4%-99.97%) significantly differed by MSM (p < 0.01) and building (p < 0.05). Mean percent recoveries adjusted with DOM and the MMC method were 246.3% (SD = 226.0) and 86.3% (SD = 70.7), respectively. Conclusion: We found that dust MEs resulted in substantial underestimation in quantifying MSMs and that DOM was not an optimal universal internal standard for the adjustment but that the MMC method resulted in more accurate and precise recovery compared with DOM. More research on adjustment methods for dust MEs in the simultaneous analyses of multiple MSMs using LC-MSMS is warranted.

Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Sectorization in Cryphonectria parasitica

  • Chun, Jeesun;So, Kum-Kang;Ko, Yo-Han;Kim, Jung-Mi;Kim, Dae-Hyuk
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.363-375
    • /
    • 2019
  • Fungal sectorization is a complex trait that is still not fully understood. The unique phenotypic changes in sporadic sectorization in mutants of CpBck1, a mitogen-activated protein kinase kinase kinase (MAPKKK) gene, and CpSlt2, a mitogen-activated protein kinase (MAPK) gene, in the cell wall integrity pathway of the chestnut blight fungus Cryphonectria parasitica have been previously studied. Although several environmental and physiological factors cause this sectoring phenotype, genetic variants can also impact this complex morphogenesis. Therefore, RNA sequencing analysis was employed to identify candidate genes associated with sectorization traits and understand the genetic mechanism of this phenotype. Transcriptomic analysis of CpBck1 and CpSlt2 mutants and their sectored progeny strains revealed a number of differentially expressed genes (DEGs) related to various cellular processes. Approximately 70% of DEGs were common between the wild-type and each of CpBck1 and CpSlt2 mutants, indicating that CpBck1 and CpSlt2 are components of the same MAPK pathway, but each component governs specific sets of genes. Functional description of the DEGs between the parental mutants and their sectored progenies revealed several key pathways, including the biosynthesis of secondary metabolites, translation, amino acid metabolism, and carbohydrate metabolism; among these, pathways for secondary metabolism and translation appeared to be the most common pathway. The results of this comparative study provide a better understanding of the genetic regulation of sector formation and suggest that complex several regulatory pathways result in interplays between secondary metabolites and morphogenesis.

Characterization of Pseudomonas sp. NIBR-H-19, an Antimicrobial Secondary Metabolite Producer Isolated from the Gut of Korean Native Sea Roach, Ligia exotica

  • Sungmin Hwang;Jun Hyeok Yang;Ho Seok Sim;Sung Ho Choi;Byounghee Lee;Woo Young Bang;Ki Hwan Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1416-1426
    • /
    • 2022
  • The need to discover new types of antimicrobial agents has grown since the emergence of antibiotic-resistant pathogens that threaten human health. The world's oceans, comprising complex niches of biodiversity, are a promising environment from which to extract new antibiotics-like compounds. In this study, we newly isolated Pseudomonas sp. NIBR-H-19 from the gut of the sea roach Ligia exotica and present both phenotypes and genomic information consisting of 6,184,379 bp in a single chromosome possessing a total of 5,644 protein-coding genes. Genomic analysis of the isolated species revealed that numerous genes involved in antimicrobial secondary metabolites are predicted throughout the whole genome. Moreover, our analysis showed that among twenty-five pathogenic bacteria, the growth of three pathogens, including Staphylococcus aureus, Streptococcus hominis and Rhodococcus equi, was significantly inhibited by the culture of Pseudomonas sp. NIBR-H-19. The characterization of marine microorganisms with biochemical assays and genomics tools will help uncover the biosynthesis and action mechanism of antimicrobial metabolites for development as antagonistic probiotics against fish pathogens in an aquatic culture system.

Production and Identification of Secondary Metabolite Gliotoxin-Like Substance Using Clinical Isolates of Candida spp.

  • Noorulhuda Ojaimi Mahdi, Al-Dahlaki;Safaa Al-Deen Ahmed Shanter, Al-Qaysi
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.4
    • /
    • pp.488-500
    • /
    • 2022
  • Most fungal infections by opportunistic yeast pathogens such as Candida spp. are the major causes of morbidity and mortality in patients with lowered immune. Previous studies have reported that some strains of Candida secret secondary metabolites play an important role in the decreasing of immunity in the infected patient. In this study, 110 Candida spp. were isolated from different clinical specimens from Baghdad hospitals. Candida isolates were identified by conventional methods, they were processed for Candida speciation on CHROMagar. The results of identification were confirmed by internal transcribed spacer (ITS) sequencing. Phylogenetic trees were analyzed with reference strains deposited in GenBank. Antifungal susceptibility testing was evaluated by the disc diffusion method and performed as recommended by the Clinical and Laboratory Standard Institute (CLSI) M44-A document. Candida isolates investigated produce secondary metabolites gliotoxin with HPLC technique and quantification. Out of 110 Candida isolates, C. albicans (66.36%) was the most frequent isolate, followed by the isolates of C. tropicalis (10.9%) and C. glabrata (6.36%) respectively. Concerning the antifungal susceptibility test, Candida isolates showed a high level of susceptibility to Miconazole (70.9%), Itraconazole (68.2%), and Nystatine (64.5%). The ability of obtained isolates of Candida spp. to produce gliotoxin on RPMI medium was investigated, only 28 isolates had the ability to secret this toxin in culture filtrates. The highest concentrations were detected in C. albicans (1.048 ㎍/ml). Gliotoxin productivity of other Candida species was significantly lower. The retention time for gliotoxin was approximately 5.08 min.

Evaluation of the Biological Activities of Marine Bacteria Collected from Jeju Island, Korea, and Isolation of Active Compounds from their Secondary Metabolites

  • Kim, Hyun-Soo;Zhang, Chao;Lee, Ji-Hyeok;Ko, Ju-Young;Kim, Eun-A;Kang, Nalae;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.215-222
    • /
    • 2014
  • To explore marine microorganisms with medical potential, we isolated and identified marine bacteria from floats, marine algae, animals, and sponges collected from Jeju Island, Korea. We isolated and identified 21 different strains from the marine samples by 16S rRNA analysis, cultured them in marine broth, and extracted them with ethyl acetate (EtOAc) to collect secondary metabolite fractions. Next, we evaluated their anti-oxidative and anti-inflammatory effects. Among the 21 strains, the secondary metabolite fraction of Bacillus badius had both strong antioxidant and anti-inflammatory activity, and thus was selected for further experiments. An antioxidant compound detected from the secondary metabolite fraction of B. badius was purified by preparative centrifugal partition chromatography (n-hexane:EtOAc:methanol:water, 4:6:4:6, v/v), and identified as diolmycin A2. Additionally, diolmycin A2 strongly inhibited nitric oxide production. Thus, we successfully identified a significant bioactive compound from B. badius among the bacterial strains collected from Jeju Island.

Development of a High Efficient "Dual Bt-Plus" Insecticide Using a Primary Form of an Entomopathogenic Bacterium, Xenorhabdus nematophila

  • Eom, Seonghyeon;Park, Youngjin;Kim, Hyeonghwan;Kim, Yonggyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.507-521
    • /
    • 2014
  • A phase variation has been reported in an entomopathogenic bacterium, Xenorhabdus nematophila. Compared with a wild-type primary form, a secondary form usually loses several physiological and biochemical characters. This study showed that the phase variation of X. nematophila caused a significant alteration in its immunosuppressive activity and subsequent entomopathogenicity. A secondary form of X. nematophila was detected in laboratory colonies and exhibited significant differences in dye absorption and entomopathogenicity. In addition, the secondary form was different in its production of eicosanoid-biosynthesis inhibitors (EBIs) compared with the primary form of X. nematophila. Production of oxindole and p-hydroxypropionic acid was significantly reduced in the culture broth of the secondary form of X. nematophila. The reduced EBI production resulted in significant suppression in the inhibitory effects on cellular nodule formation and phenoloxidase activity. Culture broth of the primary form of X. nematophila enhanced the pathogenicity of Bacillus thuringiensis ( Bt) significantly more than the culture broth of the secondary form. Furthermore, this study developed a highly efficient "Dual Bt-Plus: to control both lepidopteran insect pests Plutella xylostella and Spodoptera exigua, by mixing two effective Bt strains along with the addition of potent bacterial metabolites or 100-fold concentrated X. nematophila culture broth.

Determination of Polar Secondary Metabolomes in Arabidopsis thaliana using High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry

  • Cho, Young-Ah;Park, Se-min;Bae, Dong-Won;Seo, On-Nuri;Lee, Ji-Eun;Jeong, Sung-Woo;Kwon, Young-Sang;Cha, Jae-Yul;Bae, Han-Hong;Shin, Sung-Chul
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.165-171
    • /
    • 2012
  • As a preceding study for investigating the influence of sound wave stimulus on Arabidopsis thaliana metabolomics, the polar secondary metabolomes of the plant were determined using high performance liquid chromatography coupled with tandem mass spectrometry. A total of 10 polar secondary metabolomes were characterized and quantified. Among them, 4 metabolomes, p-coumaroylagmatine isomer (7 and 8), p-coumaroylagmatine isomer (9 and 10) were identified in the plant for the first time. The validation was conducted in terms of linearity, recovery, precision, limit of detection (LOD) and limit of quantification (LOQ). The validated method was applied to the simultaneous quantification of the 10 polar secondary metabolomes.

Marine-Derived Pharmaceuticals - Challenges and Opportunities

  • Lindequist, Ulrike
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.561-571
    • /
    • 2016
  • Marine biosphere is the largest one of the earth and harbors an enormous number of different organisms. Living conditions differ fundamentally from those in terrestrial environment. The production of specific secondary metabolites is an important adaption mechanism of marine organisms to survive in the sea. These metabolites possess biological activities which make them interesting as possible drugs for human. The review presents sources, chemistry, production and pharmacology of FDA approved marine derived pharmaceuticals arranged according to their therapeutic indication. Four of the presently seven approved drugs are used for the treatment of cancer. Each another one is applicated for treatment of viral diseases, chronic pain and to lower triglyceride level in blood. Some other products are of interest in diagnostic and as experimental tools. Besides, this article describes challenges in drug development from marine sources, especially the supply problem.