Determination of Polar Secondary Metabolomes in Arabidopsis thaliana using High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry

  • Cho, Young-Ah (Dept. of Chemistry and Research Insti. of Life Sci., Gyeongsang National Univ.) ;
  • Park, Se-min (Dept. of Chemistry and Research Insti. of Life Sci., Gyeongsang National Univ.) ;
  • Bae, Dong-Won (Center for Research Facility, Gyeongsang National Univ.) ;
  • Seo, On-Nuri (Dept. of Chemistry and Research Insti. of Life Sci., Gyeongsang National Univ.) ;
  • Lee, Ji-Eun (Dept. of Chemistry and Research Insti. of Life Sci., Gyeongsang National Univ.) ;
  • Jeong, Sung-Woo (Dept. of Chemistry and Research Insti. of Life Sci., Gyeongsang National Univ.) ;
  • Kwon, Young-Sang (Division of Applied Life Science (BK21 program), Plant Melecular Biology & Biotechnology Research Center, Gyeongsang National Univ.) ;
  • Cha, Jae-Yul (Department of Applied Biology and Institute of Agricultural & Life Science, Gyeongsang National Univ.) ;
  • Bae, Han-Hong (School of Biotechnology, Yeungnam Univ.) ;
  • Shin, Sung-Chul (Dept. of Chemistry and Research Insti. of Life Sci., Gyeongsang National Univ.)
  • 투고 : 2012.09.05
  • 심사 : 2012.12.26
  • 발행 : 2012.12.31

초록

As a preceding study for investigating the influence of sound wave stimulus on Arabidopsis thaliana metabolomics, the polar secondary metabolomes of the plant were determined using high performance liquid chromatography coupled with tandem mass spectrometry. A total of 10 polar secondary metabolomes were characterized and quantified. Among them, 4 metabolomes, p-coumaroylagmatine isomer (7 and 8), p-coumaroylagmatine isomer (9 and 10) were identified in the plant for the first time. The validation was conducted in terms of linearity, recovery, precision, limit of detection (LOD) and limit of quantification (LOQ). The validated method was applied to the simultaneous quantification of the 10 polar secondary metabolomes.

키워드

과제정보

연구 과제 주관 기관 : Rural Development Administration

참고문헌

  1. Bednarek, P., J. Winter, B. Hamberger, N. J. Oldham, B. Schneider, J. Tan, and K. Hahlbrock. 2004. Induction of 3'-O-${\beta}$-D-ribofuranosyl adenosine during compatible, but not during incompatible, interactions of Arabidopsis thaliana or Lycopersicon esculentum with Pseudomonas syringae pathovar tomato. Planta.126: 668-672.
  2. Conrath, U., G. J. M. Beckers, V. Flors, P. Garcia-Agustin, G. Jakab, F. Mauch, M. A. Newman, C. M. J. Pieterse, B. Poinssot, M. J. Pozo, A. Pugin, U. Schaffrath, J. Ton, D. Wendehenne, L. Zimmerli, and B. Mauch-Mani. 2006. Priming: Getting Ready for Battle. Mol. Plant-Microbe Interact. 19: 1062-1071. https://doi.org/10.1094/MPMI-19-1062
  3. Graham, T. L. 1998. Flavonoid and flavonol glycoside metabolism in Arabidopsis. Plant Physiol. Biochem. 36: 135-144. https://doi.org/10.1016/S0981-9428(98)80098-3
  4. http://biotech.korea.ac.kr/lab/PDMG/Research/Arabidopsis/aboutarabidopsis.html.
  5. http://en.wikipedia.org/wiki/Arabidopsis_thaliana.
  6. Jahangir, M., I. B. Abdel-Farid, H. K. Kim, Y. H. Choi, and R. Verpoorte. 2009. Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. Environ. Exp. Bot. 67: 23-33. https://doi.org/10.1016/j.envexpbot.2009.06.007
  7. Jeong, M. J., C. K. Shim, J. O. Lee, H. B. Kwon, Y. H. Kim, S. K. Lee, M. O. Byun, and S. C. Park. 2008. Plant gene responses to frequency-specific sound signals. Mol. Breeding. 21: 217-226. https://doi.org/10.1007/s11032-007-9122-x
  8. Kerhoas, L., D. Aouak, A. Cingoz, J. M. Routaboul, L. Lepiniec, J. Einhorn, and N. Birlirakis. 2006. Structural Characterization of the Major Flavonoid Glycosides from Arabidopsis thaliana Seeds. J. Agric. Food Chem. 54: 6603-6612. https://doi.org/10.1021/jf061043n
  9. Muller, A., P. Duchting, and E. W. Weiler. 2002. A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216: 44-56. https://doi.org/10.1007/s00425-002-0866-6
  10. Okada, M., A. Mutsubara, and M. Ueda. 2008. Synthesis of photoaffinity probe based on the leaf-opening factor from genus Albizzia. Tetrahedron Lett. 49: 3794-3796. https://doi.org/10.1016/j.tetlet.2008.04.002
  11. Stehle, F., W. Brandt, J. Schmidt, C. Milkowski, and D. Strack. 2008. Activities of Arabidopsis sinapoylglucose:malate sinapoyltransferase shed light on functional diversification of serine carboxypeptidase-like acyltransferases. Phytochemistry. 69: 1826-1831. https://doi.org/10.1016/j.phytochem.2008.03.021
  12. von Ropenack, E., A. Parr, and P. Schulze-Lefert. 1998. Structural analyses and dynamics of soluble and cell wall-bound phenolics in a broad spectrum resistance to the powdery mildew fungus in barley. J. Biol. Chem. 273: 9013-9022. https://doi.org/10.1074/jbc.273.15.9013
  13. Xiujuan, W., W. Bochu, J. Yi, D. Chuanren, and A. Sakanishi. 2003. Effect of sound wave on the synthesis of nucleic acid and protein in chrysanthemum. Colloids and Surfaces B: Biointerf. 29: 99-102. https://doi.org/10.1016/S0927-7765(02)00152-2
  14. Yi, J., W. Bochu, W. Xiujuan, W. Daohong, D. Chuanren, Y. Toyama, and A. Sakanishi. 2003. Effect of sound wave on the metabolism of chrysanthemum roots. Colloids and Surfaces B: Biointerf. 29: 115-118. https://doi.org/10.1016/S0927-7765(02)00155-8