Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.181

Marine-Derived Pharmaceuticals - Challenges and Opportunities  

Lindequist, Ulrike (Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald)
Publication Information
Biomolecules & Therapeutics / v.24, no.6, 2016 , pp. 561-571 More about this Journal
Abstract
Marine biosphere is the largest one of the earth and harbors an enormous number of different organisms. Living conditions differ fundamentally from those in terrestrial environment. The production of specific secondary metabolites is an important adaption mechanism of marine organisms to survive in the sea. These metabolites possess biological activities which make them interesting as possible drugs for human. The review presents sources, chemistry, production and pharmacology of FDA approved marine derived pharmaceuticals arranged according to their therapeutic indication. Four of the presently seven approved drugs are used for the treatment of cancer. Each another one is applicated for treatment of viral diseases, chronic pain and to lower triglyceride level in blood. Some other products are of interest in diagnostic and as experimental tools. Besides, this article describes challenges in drug development from marine sources, especially the supply problem.
Keywords
Marine drug development; Cytostatics; Analgetics; Antiviral; Antihyperlipidemic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Brandon, E. F., Sparidans, R. W., Guijt, K. J., Lowenthal, S., Meijerman, I., Beijnen, J. H. and Schellens, J. H. (2006) In vitro characterization of the human biotransformation and CYP reaction phenotype of ET-743 (Yondelis, Trabectedin), a novel marine anti-cancer drug. Invest. New Drugs 24, 3-14.   DOI
2 Debbab, A., Aly, A. H., Lin, W. H. and Proksch, P. (2010) Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol. 3, 544-563.   DOI
3 Deng, C., Pan, B. and O'Connor, O. A. (2013) Brentuximab Vedotin. Clin. Cancer Res. 19, 22-27.   DOI
4 Burgess, J. G. (2012) New and emerging analytical techniques for marine biotechnology. Curr. Opin. Biotechnol. 23, 29-33.   DOI
5 Caron, D. A., Countway, P. D., Jones, A. C., Kim, D. Y. and Schnetzer, A. (2012) Marine protistan diversity. Ann. Rev. Mar. Sci. 4, 467-493.   DOI
6 Carter, N. J. and Keam, S. J. (2010) Trabectedin: a review of its use in soft tissue sarcoma and ovarian cancer. Drugs 70, 355-376.
7 Census of marine life [Internet] Office of Marine Programs, University of Rhode Island, Graduate School of Oceanography; c2010 [cited 2016 Aug 03]. Available from: http://www.coml.org/.
8 Cheung, R. C., Ng, T. B., Wong, J. H., Chen, Y. C. and Chan, W. Y. (2016) Marine natural products with anti-inflammatory activity. Appl. Microbiol. Biotechnol. 100, 1645-1666.   DOI
9 Chini Zitelli, G., Lavista, F., Bastianini, A., Rodolfi, L., Vincenzini, M. and Tredici, M. R. (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J. Biotechnol. 70, 299-312.   DOI
10 Cline, J., Braman, J. C. and Hogrefe, H. H. (1996) PCR fidelity of Pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res. 24, 3546-3551.   DOI
11 Council of Europe (2014) European Pharmacopoeia (Ph. Eur.) (8th edition). Council of Europe.
12 Cuevas, C. and Francesch, A. (2009) Development of Yondelis (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat. Prod. Rep. 26, 322-337.   DOI
13 Harris, J. R. and Markl, J. (1999) Keyhole limpet hemocyanin (KLH): a biomedical review. Micron 30, 597-623.   DOI
14 Fromm, J. R., McEarchem, J. A., Kennedy, D., Thomas, A., Shustov, A. R. and Gopal, A. K. (2012) Clinical binding properties, internalization kinetics, and clinic-pathological activity of brentuximab vedotin: an antibody-drug conjugate for CD30-positive lymphoid neoplasms. Clin. Lymphoma Myeloma Leuk. 12, 280-283.   DOI
15 Garnock-Jones, K. P. (2013) Brentuximab vedotin: a review of its use in patients with Hodgkin lymphoma and systemic anaplastic large cell lymphoma following previous treatment failure. Drugs 73, 371-381.   DOI
16 Giddings, L. A. and Newman, D. J. (2013) Microbial natural products: molecular blue-prints for antitumor drugs. J. Ind. Microbiol. Biotechnol. 40, 1181-1210.   DOI
17 Gross, H. (2009) Genomic mining - a concept for the discovery of new bioactive natural products. Curr. Opin. Drug Discov. Devel. 12, 207-219.
18 Grosso, F., D'Incalci, M., Cartaoafa, M., Nieto, A., Fernandez-Teruel, C., Alfaro, V., Lardelli, P., Roy, E., Gomez, J., Kahatt, C., Soto-Matos, A. and Judson, I. (2012) A comprehensive safety analysis confirms rhabdomyolysis as an uncommon adverse reaction in patients treated with trabectedin. Cancer Chemother. Pharmacol. 69, 1557-1565.   DOI
19 Hart, J. B., Lill, R. E., Hickford, S. J. H., Blunt, J. W. and Munro, M. H. G. (2000) The halichondrins: chemistry, biology, supply and delivery. In Drugs from the Sea (N. Fusetani, Ed.), pp. 134-153. Karger, Basel.
20 Hill, R. T. and Fenical, W. (2010) Pharmaceuticals from marine natural products: surge or ebb? Curr. Opin. Biotechnol. 21, 777-779.   DOI
21 Faulkner, D. J., Harper, M. K., Haygood, M. G., Salomon, C. E. and Schmidt, E. W. (2000) Symbiotic bacteria in sponges: sources of bioactive substances. In Drugs from the Sea (N. Fusetani, Ed.), pp. 107-119. Karger, Basel.
22 Doronina, S. O., Mendelsohn, B. A., Bovee, T. D., Cerveny, C. G., Alley, S. C., Meyer, D. L., Oflazoglu, E., Toki, B. E., Sanderson, R. J., Zabinski, R. F., Wahl, A. F. and Senter, P. D. (2006) Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug. Chem. 17, 114-124.   DOI
23 D'Incalci, M., Badri, N., Galmarini, C.M. and Allavena, P. (2014) Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. Br. J. Cancer 111, 646-650.   DOI
24 Engene, N., Tronholm, A., Salvador-Reyes, L. A., Luesch, H. and Paul, V. J. (2015) Caldora penicillata gen. nov., comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance. J. Phycol. 51, 670-681.   DOI
25 Fenical, W., Jensen, P. R., Palladino, M. A., Lam, K. S., Lloyd, G. K. and Potts, B. C. (2009) Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg. Med. Chem. 17, 2175-2180.   DOI
26 Kamat, P. K., Rai, S., Swarnkar, S., Shukla, R. and Nath, C. (2014) Molecular and cellular mechanisms of okadaic acid (OKA)-induced neurotoxicity: a novel tool of Alzheimer's disease therapeutic application. Mol. Neurobiol. 50, 852-865.   DOI
27 Hu, G. P., Yuan, J., Sun, L., She, Z. G., Wu, J. H., Lan, X. J., Zhu, X., Lin, Y. C. and Chen, S. P. (2011) Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. Drugs 9, 514-525.   DOI
28 Hu, Y., Chen, J., Hu, G., Yu, J., Zhu, X., Lin, Y., Chen, S. and Yuan, J. (2015) Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar. Drugs 13, 202-221.   DOI
29 Jensen, P. R. and Fenical, W. (2000) Marine microorganisms and drug discovery: current status and future potential. In Drugs from the Sea (N. Fusetani, Ed.), pp. 6-29. Karger, Basel.
30 Kiuru, P., D'Auria, M. V., Muller, C. D., Tammela, P., Vuorela, H. and Yli-Kauhaluoma, J. (2014) Exploring marine resources for bioactive compounds. Planta Med. 80, 1234-1246.   DOI
31 Klotz, U. (2006) Ziconotide - a novel neuron-specific calcium channel blocker for the intrathecal treatment of severe chronic pain - a short review. Int. J. Clin. Pharmacol. Ther. 44, 478-483.   DOI
32 Koski, R. R. (2008) Omega-3-acid ethyl esters (lovaza) for severe hypertriglyceridemia. P T 33, 271-303.
33 Konig, G. M. (1992) Meeresorganismen als Quelle pharmazeutisch bedeutsamer Naturstoffe. Dtsch. Apoth. Ztg. 132, 673-683.
34 Miljanich, G. P. (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11, 3029-3040.   DOI
35 Mayer, A. M., Glaser, K. B., Cuevas, C., Jacobs, R. S., Kem, W., Little, R. D., McIntosh, J. M., Newman, D. J., Potts, B. C. and Shuster, D. E. (2010) The odyssee of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol. Sci. 31, 255-265.   DOI
36 Mayer, A. M. S. (2016) Marine pharmaceuticals: the clinical pipeline. [cited 2016 Aug 01] Available from: http://marinepharmacology.midwestern.edu/clinPipeline.htm/.
37 Mendola, D. (2000) Aquacultural production of bryostatin 1 and ecteinascidin 743. In Drugs from the Sea (N. Fusetani, Ed.), pp. 120-133. Karger, Basel.
38 Mocz, G. (2007) Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics. Mar. Biotechnol. 9, 305-328.   DOI
39 Molinski, T. F., Dalisay, D. S., Lievens, S. L. and Saludes, J. P. (2009) Drug development from marine natural products. Nat. Rev. Drug Discov. 8, 69-85.   DOI
40 Morris, P. G. (2010) Advances in therapy: eribulin improves survival for metastatic breast cancer. Anticancer Drugs 21, 885-889.   DOI
41 Lindequist, U. and Schweder, T. (2001) Marine Biotechnology. In Biotechnology, Vol. 10: Special processes (H. J. Rehm, Ed.), pp. 441-484. Wiley-VCH, Weinheim.
42 Mullis, K. B. and Falcona, F. A. (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain-reaction. Meth. Enzymol. 155, 335-350.   DOI
43 Mutschler, E., Geisslinger, G., Menzel, S., Ruth, P. and Schmidtko, A. (2016) Pharmakologie kompakt: Allgemeine und Klinische Pharmakologie, Toxikologie. Wissenschaftliche Verlagsgesellschaft Stuttgart. German.
44 Newman, D. J. and Cragg, G. M. (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 67, 1216-1238.   DOI
45 Leal, M. C., Madeira, C., Brandao, C. A., Puga, J. and Calado, R. (2012) Bioprospecting of marine invertebrates for new natural products - a chemical and zoogeographical perspective. Molecules 17, 9842-9854.   DOI
46 Li, X. and Qin, L. (2005) Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol. 23, 539-543.   DOI
47 Luesch, H., Moore, R. E., Paul, V. J., Mooberry, S. L. and Corbett, T. H. (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J. Nat. Prod. 64, 907-910.   DOI
48 Lopez-Guerrero, J. A., Romero, I. and Poveda, A. (2015) Trabectedin therapy as an emerging treatment strategy for recurrent platinum-sensitive ovarian cancer. Chin. J. Cancer 34, 41-49.
49 Lowenberg, B. (2013) Sense and nonsense of high-dose cyatarabine for acute myeloid leukemia. Blood 121, 26-28.   DOI
50 Marmann, A., Aly, A. H., Lin, W., Wang, B. and Proksch, P. (2014) Co-cultivation - a powerful emerging tool for enhancing the chemical diversity of micororganisms. Mar. Drugs 12, 1043-1065.   DOI
51 Martins, A., Vieira, H., Gaspar, H. and Santos, S. (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar. Drugs 12, 1066-1101.   DOI
52 Maruzzo, M., Brunello, A., Diminutto, A., Rastrelli, M. and Basso, U. (2016) Long-term response to first-line trabectedin in an elderly female patient with a metastatic leiomyosarcoma unfit for anthracycline. Anticancer Drugs 27, 264-267.   DOI
53 Pean, E., Klaar, S., Berglund, E. G., Salmonson, T., Borregaard, J., Hofland, K. F., Ersboll, J., Abadie, E., Giuliani, R. and Pignatti, F. (2012) The European medicines agency review of eribulin for the treatment of patients with locally advanced or metastatic breast cancer: summary of the scientific assessment of the committee for medicinal products for human use. Clin. Cancer Res. 18, 4491-4497.   DOI
54 Newman, D. J. and Cragg, G. M. (2014) Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar. Drugs 12, 255-278.   DOI
55 Newman, D. J. and Cragg, G. M. (2016) Drugs and drug candidates from marine sources: an assessment of the current "state of play". Planta Med. 82, 775-789.   DOI
56 Olivera, B. M., Gray, W. R., Zeikus, R., McIntosh, J. M., Varga, J., Rivier, J., DeSantos, V. and Cruz, L. J. (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230, 1338-1343.   DOI
57 Pro, B., Advani, R., Brice, P., Bartlett, N. L., Rosenblatt, J. D., Illidge, T., Matous, J., Ramchandren, R., Fanale, M., Connors, J. M., Yang, Y., Sievers, E. L., Kennedy, D. A. and Shustov, A. (2012) Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190-2196.   DOI
58 Sagar, S., Kaur, M. and Mineman, K. P. (2010) Antiviral lead compounds from marine sponges. Mar. Drugs 8, 2619-2638.   DOI
59 Radjasa, O. K., Vaske, Y. M., Navarro, G., Vervoort, H. C., Tenney, K., Linington, R. G. and Crews, P. (2011) Highlights of marine invertebrate-derived biosynthetic products: their biomedical potential and possible production by microbial associants. Bioorg. Med. Chem. 19, 6658-6674.   DOI
60 Ramasamy, M. S., Arumugam, P., Manikandan, S. and Murugan, A. (2011) Molecular and combinatorial array of therapeutic targets from conotoxins. Am. J. Drug Discovery Dev. 1, 49-57.   DOI
61 Schofield, M. M., Jain, S., Porat, D., Dick, G. J. and Sherman, D. H. (2015) Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. Environ. Microbiol. 17, 3964-3975.   DOI
62 Schweder, T., Lindequist, U. and Lalk, M. (2005) Screening for new metabolites from marine microorganisms. In Advances in Biochemical Engineering/Biotechnology, Vol. 96: Marine Biotechnology (Y. LeGal and R. Ulber, Eds.), pp. 1-48. Springer, Berlin, Heidelberg.
63 Shimomura, O. (2009) Discovery of green fluorescent protein (GFP) (Nobel lecture). Angew. Chem. Int. Ed. Engl. 48, 5590-5602.   DOI
64 Skropeta, D. (2008) Deep-sea natural products. Nat. Prod. Rep. 25, 1131-1166.   DOI
65 World Register of Marine Species [Internet] WoRMS Editorial Board; 2016 [cited 2016 Aug 03]. Available from: http://www.marinespecies.org/.
66 Smith, J. A., Wilson, L., Azarenko, O., Zhu, X., Lewis, B. M., Littlefield, B. A. and Jordan, M. A. (2010) Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry 49, 1331-1337.   DOI
67 Snelgrove, P. V. (2016) An ocean of discovery: biodiversity beyond the Census of Marine Life. Planta Med. 82, 790-799.   DOI
68 Suleria, H. A., Osborne, S., Masci, P. and Gobe, G. (2015) Marinebased nutraceuticals: an innovative trend in the food and supplement industries. Mar. Drugs 13, 6336-6351.   DOI
69 Weinheimer, A. J. and Spraggins, R. L. (1969) The occurrence of two new prostaglandin derivatives (15-epi-PGA2 and its acetate, methyl ester) in the gorgonian Plexaura homomalla chemistry of coelenterates. XV. Tetrahedron Lett. 10, 5185-5188.   DOI
70 Witte, A. V., Kerti, L., Hermannstadter, H. M., Fiebach, J. B., Schreiber, S. J., Schuchardt, J. P., Hahn, A. and Floel, A. (2014) Long-chain omega-3 fatty acids improve brain function and structure in older adults. Cereb. Cortex 24, 3059-3068.   DOI
71 Wu, C. H. (2009) Palytoxin: membrane mechanisms of action. Toxicon 54, 1183-1189.   DOI
72 Younes, A., Gopal, A. K., Smith, S. E., Ansell, S. M., Rosenblatt, J. D., Savage, K. J., Ramchandren, R., Bartlett, N. L., Cheson, B. D., de Vos, S., Forero-Torres, A., Moskowitz, C. H., Connors, J. M., Engert, A., Larsen, E. K., Kennedy, D. A., Sievers, E. L. and Chen, R. (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J. Clin. Oncol. 30, 2183-2189.   DOI
73 Terlau, H. and Olivera, B. M. (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev. 84, 41-68.   DOI
74 Proksch, P., Putz, A., Ortlepp, S., Kjer, J. and Bayer, M. (2010) Bioactive natural products from marine sponges and fungal endophytes. Phytochem. Rev. 9, 475-489.   DOI
75 Perez-Victoria, I., Martin, J. and Reyes, F. (2016) Combined LC/UV/MS and NMR strategies for the dereplication of marine natural products. Planta Med. 82, 857-871.   DOI
76 Sutherland, M. S., Sanderson, R. J., Gordon, K. A., Andreyka, J., Cerveny, C. G., Yu, C., Lewis, T. S., Meyer, D. L., Zabinski, R. F., Doronina, S. O., Senter, P. D., Law, C. L. and Wahl, A. F. (2006) Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J. Biol. Chem. 281, 10540-10547.   DOI
77 Takeyama, H., Takeda, D., Yazawa, K., Yamada, A. and Matsunaga, T. (1997) Expression of the eicosapentaenoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology 143, 2725-2731.   DOI
78 Tarman, K., Lindequist, U. and Mundt, S. (2013) Metabolites of marine microorganisms and their pharmacological activities. In Marine Microbiology: Bioactive Compounds and Biotechnological Applications (S. K. Kim, Ed.), pp. 393-415. Wiley-VCH, Weinheim.
79 Teuscher, E. and Lindequist, U. (2010) Biogene Gifte. Wissenschaftliche Verlagsgesellschaft, Stuttgart. German.
80 Thomas, N. V. and Kim, S. K. (2013) Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 11, 146-164.   DOI
81 Bane, V., Lehane, M., Dikshit, M., O'Riordan, A. and Furey, A. (2014) Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins 6, 693-755.   DOI
82 Anjum, K., Abbas, S. Q., Shah, S. A., Akhter, N., Batool, S. and Hassan, S. S. (2016) Marine sponges as drug treasure. Biomol.Ther. (Seoul) 24, 347-362.   DOI
83 Aicher, T. D., Buszek, K. R., Fang, F. G., Forsyth, C. J., Jung, S. H., Kishi, Y., Matelich, M. C., Scola, P. M., Spero, D. M. and Yoon, S. K. (1992) Total synthesis of halichondrin B and norhalichondrin B. J. Am. Chem. Soc. 114, 3162-3164.   DOI
84 Ansell, S. M. (2011) Brentuximabvedotin: delivering an antimitotic drug to activated lymphoma cells. Expert Opin. Investig. Drugs 20, 99-105.   DOI
85 Bergmann, W. and Burke, D. C. (1955) Marine products. XXXIX. The nucleosides of sponges. III. Spongothymidine and spongouridine. J. Org. Chem. 20, 1501-1507.   DOI
86 Bergmann, W. and Feeney, R. J. (1951) Contributions to the study of marine products. XXXII. The nucleosides of sponges. J. Org. Chem. 16, 981-987.   DOI
87 Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. and Prinsep, M. R. (2016) Marine natural products. Nat. Prod. Rep. 33, 382-431.   DOI
88 Bogdanov, A. M., Mishin, A. S., Yampolsky, I. V., Belousov, V. V., Chudakov, D. M., Subach, F. V., Verkhusha, W., Lukyanov, S. and Lukyanov, K. A. (2009) Green fluorescent proteins are light-induced electron donors. Nat. Chem. Biol. 5, 459-461.   DOI
89 Bongiorni, L. and Pietra, F. (1996) Marine natural products for industrial applications. Chem. Ind. 2, 54-58.