• 제목/요약/키워드: second differential

검색결과 922건 처리시간 0.028초

New Fully-Differential CMOS Second-Generation Current Conveyer

  • Mahmoud, Soliman A.
    • ETRI Journal
    • /
    • 제28권4호
    • /
    • pp.495-501
    • /
    • 2006
  • This paper presents a new CMOS fully-differential second-generation current conveyor (FDCCII). The proposed FDCCII is based on a fully-differential difference transconductor as an input stage and two class AB output stages. Besides the proposed FDCCII circuit operating at a supply voltage of ${\pm}1.5\;V$, it has a total standby current of $380\;{\mu}A$. The applications of the FDCCII to realize a variable gain amplifier, fully-differential integrator, and fully-differential second-order bandpass filter are given. The proposed FDCII and its applications are simulated using CMOS $0.35\;{\mu}m$ technology.

  • PDF

OSCILLATIONS OF SOLUTIONS OF SECOND ORDER QUASILINEAR DIFFERENTIAL EQUATIONS WITH IMPULSES

  • Jin, Chuhua;Debnath, Lokenath
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.1-16
    • /
    • 2007
  • Some Kamenev-type oscillation criteria are obtained for a second order quasilinear damped differential equation with impulses. These criteria generalize and improve some well-known results for second order differential equations with land without impulses. In addition, new oscillation criteria are also obtained to generalize and improve known results. Two examples of applications are given to illustrate the theory.

Oscillation of Second Order Nonlinear Elliptic Differential Equations

  • Xu, Zhiting
    • Kyungpook Mathematical Journal
    • /
    • 제46권1호
    • /
    • pp.65-77
    • /
    • 2006
  • By using general means, some oscillation criteria for second order nonlinear elliptic differential equation with damping $$\sum_{i,j=1}^{N}D_i[a_{ij}(x)D_iy]+\sum_{i=1}^{N}b_i(x)D_iy+p(x)f(y)=0$$ are obtained. These criteria are of a high degree of generality and extend the oscillation theorems for second order linear ordinary differential equations due to Kamenev, Philos and Wong.

  • PDF

TWO-SCALE CONVERGENCE FOR PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM COEFFICIENTS

  • Pak, Hee-Chul
    • Communications of the Korean Mathematical Society
    • /
    • 제18권3호
    • /
    • pp.559-568
    • /
    • 2003
  • We introduce the notion of two-scale convergence for partial differential equations with random coefficients that gives a very efficient way of finding homogenized differential equations with random coefficients. For an application, we find the homogenized matrices for linear second order elliptic equations with random coefficients. We suggest a natural way of finding the two-scale limit of second order equations by considering the flux term.

GENERALIZED SECOND-ORDER DIFFERENTIAL EQUATIONS WITH TWO-POINT BOUNDARY CONDITIONS

  • Kim, Young Jin
    • The Pure and Applied Mathematics
    • /
    • 제26권3호
    • /
    • pp.157-175
    • /
    • 2019
  • In this paper we define higher-order Stieltjes derivatives, and using Schaefer's fixed point theorem we investigate the existence of solutions for a class of differential equations involving second-order Stieltjes derivatives with two-point boundary conditions. The equations include ordinary and impulsive differential equations, and difference equations.

Numerical Algorithm for Power Transformer Protection

  • Park, Chul-Won;Suh, Hee-Seok;Shin, Myong-Chul
    • KIEE International Transactions on Power Engineering
    • /
    • 제4A권3호
    • /
    • pp.146-151
    • /
    • 2004
  • The most widely used primary protection for the internal fault detection of the power transformer is current ratio differential relaying (CRDR) with harmonic restraint. However, the second harmonic component could be decreased by magnetizing inrush when there have been changes to the material of the iron core or its design methodology. The higher the capacitance of the high voltage status and underground distribution, the more the differential current includes the second harmonic during the occurrence of an internal fault. Therefore, the conventional second harmonic restraint CRDR must be modified. This paper proposes a numerical algorithm for enhanced power transformer protection. This algorithm enables a clear distinction regarding internal faults as well as magnetizing inrush and steady state. It does this by analyzing the RMS fluctuation of terminal voltage, instantaneous value of the differential current, RMS changes, harmonic component analysis of differential current, and analysis of flux-differential slope characteristics. Based on the results of testing with WatATP99 simulation data, the proposed algorithm demonstrated more rapid and reliable performance.