SOME IDENTITIES FOR BERNOULLI NUMBERS OF THE SECOND KIND ARISING FROM A NON-LINEAR DIFFERENTIAL EQUATION

Dae San Kim and Taekyun Kim

Abstract

In this paper, we give explicit and new identities for the Bernoulli numbers of the second kind which are derived from a non-linear differential equation.

1. Introduction

For $r \in \mathbb{N}$, the Bernoulli polynomials of order r are defined by the generating function to be

$$
\begin{align*}
\left(\frac{t}{e^{t}-1}\right)^{r} e^{x t} & =\underbrace{\left(\frac{t}{e^{t}-1}\right) \times \cdots \times\left(\frac{t}{e^{t}-1}\right)}_{r \text {-times }} e^{x t} \tag{1}\\
& =\sum_{n=0}^{\infty} B_{n}^{(r)}(x) \frac{t^{n}}{n!}, \quad(\text { see }[1]-[16]) .
\end{align*}
$$

When $x=0, B_{n}^{(r)}=B_{n}^{(r)}(0)$ are called the Bernoulli numbers of order r.
As is well known, the Bernoulli polynomials of the second kind are given by the generating function to be

$$
\begin{equation*}
\frac{t}{\log (1+t)}(1+t)^{x}=\sum_{n=0}^{\infty} b_{n}(x) \frac{t^{n}}{n!}, \quad(\text { see }[3,5,7,14]) \tag{2}
\end{equation*}
$$

Indeed, $b_{n}(x)=B_{n}^{(n)}(x+1)$.
When $x=0, b_{n}=b_{n}(0)$ are called the Bernoulli numbers of the second kind.

The first few Bernoulli numbers of the second kind are $b_{0}=1, b_{1}=\frac{1}{2}$, $b_{2}=-\frac{1}{6}, b_{3}=\frac{1}{4}, b_{4}=-\frac{19}{30}, b_{5}=\frac{9}{4}, \ldots$

Received October 8, 2014; Revised May 12, 2015.
2010 Mathematics Subject Classification. 05A19,11B68,34A34.
Key words and phrases. Bernoulli numbers of second kind, non-linear differential equation.

From (2), we have

$$
\begin{equation*}
b_{n}(x)=\sum_{l=0}^{n}\binom{n}{l} b_{l}(x)_{n-l}, \quad(n \geq 0) \tag{3}
\end{equation*}
$$

where $(x)_{n}=x(x-1) \cdots(x-n+1)=\sum_{l=0}^{n} S_{1}(n, l) x^{l}$, with $S_{1}(n, l)$ the Stirling number of the first kind.

Let $u \neq 1 \in \mathbb{C}$. Then the Frobenius-Euler polynomials are defined by generating function to be

$$
\begin{equation*}
\frac{1-u}{e^{t}-u} e^{x t}=\sum_{n=0}^{\infty} H_{n}(u \mid x) \frac{t^{n}}{n!}, \quad(\text { see }[1,11,15]) \tag{4}
\end{equation*}
$$

From (4), L. Carlitz gave the following identity:

$$
\begin{align*}
H_{n}(x \mid \alpha) H_{n}(x \mid \beta)= & H_{m+n}(x \mid \alpha \beta) \frac{(1-\alpha)(1-\beta)}{1-\alpha \beta} \tag{5}\\
& +\frac{\alpha(1-\beta)}{1-\alpha \beta} \sum_{r=0}^{m}\binom{m}{r} H_{r}(\alpha) H_{m+n-r}(x \mid \alpha \beta) \\
& +\frac{\beta(1-\beta)}{1-\alpha \beta} \sum_{s=0}^{n}\binom{n}{s} H_{s}(\beta) H_{m+n-s}(x \mid \alpha \beta)
\end{align*}
$$

where $\alpha, \beta \in \mathbb{C}$ with $\alpha \neq 1, \beta \neq 1$ and $\alpha \beta \neq 1, m, n \in \mathbb{Z}_{\geq 0}$ (see [11]).
In [11], the second author gave some new and interesting identities and formulas for the Frobenius-Euler polynomials of higher order which are derived from a non-linear differential equation.

In this paper, we develop some new method for obtaining identities related to Bernoulli numbers of the second kind arising from a non-linear differential equation. From our method, we derive new identities for the Bernoulli numbers of the second kind.

2. Some identities for Bernoulli numbers of the second kind

In this section, we assume that

$$
\begin{equation*}
F=F(t)=\frac{1}{\log (1+t)}, \quad \text { and } F^{N}(t)=\underbrace{F \times \cdots \times F}_{n \text {-times }} \quad \text { for } N \in \mathbb{N} \tag{6}
\end{equation*}
$$

Thus, by (6), we get

$$
\begin{gather*}
F^{(1)}=\frac{d F(t)}{d t}=\frac{(-1)}{(\log (1+t))^{2}}\left(\frac{1}{1+t}\right)=\frac{(-1)}{1+t} F^{2}, \tag{7}\\
F^{(2)}=\frac{d}{d t} F^{(1)}(t)=\frac{(-1)^{2}}{(1+t)^{2}} F^{2}+\frac{(-1)}{1+t} 2 F \cdot F^{(1)} \\
=\frac{(-1)^{2}}{(1+t)^{2}} F^{2}+2 \frac{(-1)^{2}}{(1+t)^{2}} F^{3}=\frac{(-1)^{2}}{(1+t)^{2}}\left(F^{2}+2 F^{3}\right) .
\end{gather*}
$$

From (7) and (8), we can derive the following equations:

$$
\begin{align*}
F^{(3)} & =\frac{d F^{(2)}}{d t}=\frac{(-1)^{3} 2}{(1+t)^{3}}\left(F^{2}+2 F^{3}\right)+\frac{(-1)^{2}}{(1+t)^{2}}\left(2 F F^{(1)}+6 F^{2} F^{(1)}\right) \tag{9}\\
& =\frac{(-1)^{3}}{(1+t)^{3}}\left(2 F^{2}+4 F^{3}\right)+\frac{(-1)^{3}}{(1+t)}\left(2 F^{3}+6 F^{4}\right) \\
& =\frac{(-1)^{3}}{(1+t)^{3}}\left(2 F^{2}+6 F^{3}+6 F^{4}\right),
\end{align*}
$$

and
(10) $\quad F^{(4)}=\frac{d F^{(3)}}{d t}=\frac{(-1)^{4} 3}{(1+t)^{4}}\left(2 F^{2}+6 F^{3}+6 F^{4}\right)$

$$
\begin{aligned}
& +\frac{(-1)^{3}}{(1+t)^{3}}\left(4 F F^{(1)}+18 F^{2} F^{(1)}+24 F^{3} F^{(1)}\right) \\
= & \frac{(-1)^{4}}{(1+t)^{4}}\left(6 F^{2}+18 F^{3}+18 F^{4}\right)+\frac{(-1)^{4}}{(1+t)^{4}}\left(4 F^{3}+18 F^{4}+24 F^{5}\right) \\
= & \frac{(-1)^{4}}{(1+t)^{4}}\left(6 F^{2}+22 F^{3}+36 F^{4}+24 F^{5}\right) .
\end{aligned}
$$

Continuing this process, we set

$$
\begin{equation*}
F^{(N)}=\frac{(-1)^{N}}{(1+t)^{N}} \sum_{i=2}^{N+1} a_{i-1}(N) F^{i} \tag{11}
\end{equation*}
$$

where

$$
F^{(N)}=\frac{d^{N} F(t)}{d t^{N}} \quad \text { and } N \in \mathbb{N} .
$$

Now, we will determine the coefficients $a_{i-1}(N)$ in (11). Taking the derivative of (11) with respect to t, we have

$$
\begin{align*}
F^{(N+1)}= & \frac{(-1)^{N+1} N}{(1+t)^{N+1}} \sum_{i=2}^{N+1} a_{i-1}(N) F^{i}+\frac{(-1)^{N}}{(1+t)^{N}} \sum_{i=2}^{N+1} a_{i-1}(N) i F^{i-1} F^{(1)} \tag{12}\\
= & \frac{(-1)^{N+1} N}{(1+t)^{N+1}} \sum_{i=2}^{N+1} a_{i-1}(N) F^{i}+\frac{(-1)^{N+1}}{(1+t)^{N+1}} \sum_{i=2}^{N+1} i a_{i-1}(N) F^{i+1} \\
= & \frac{(-1)^{N+1} N}{(1+t)^{N+1}} \sum_{i=2}^{N+1} a_{i-1}(N) F^{i}+\frac{(-1)^{N+1}}{(1+t)^{N+1}} \sum_{i=3}^{N+1}(i-1) a_{i-2}(N) F^{i} \\
= & \frac{(-1)^{N+1}}{(1+t)^{N+1}}\left\{N a_{1}(N) F^{2}+\sum_{i=3}^{N+1}\left((i-1) a_{i-2}(N)+N a_{i-1}(N)\right) F^{i}\right. \\
& \left.+a_{N}(N)(N+1) F^{N+2}\right\} .
\end{align*}
$$

Replacing N by $N+1$ in (11), we get

$$
\begin{equation*}
F^{(N+1)}=\frac{(-1)^{N+1}}{(1+t)^{N+1}} \sum_{i=2}^{N+2} a_{i-1}(N+1) F^{i} \tag{13}
\end{equation*}
$$

From (12) and (13), we have

$$
\begin{align*}
& \sum_{i=2}^{N+1} a_{i-1}(N+1) F^{i} \tag{14}\\
= & N a_{1}(N) F^{2}+\sum_{i=3}^{N+1}\left((i-1) a_{i-2}(N)+N a_{i-1}(N)\right) F^{i} \\
& +(N+1) a_{N}(N) F^{N+2} .
\end{align*}
$$

By comparing the coefficients on both sides in (14), we get

$$
\begin{equation*}
a_{1}(N+1)=N a_{1}(N), \quad a_{N+1}(N+1)=(N+1) a_{N}(N) \tag{15}
\end{equation*}
$$

and
(16) $\quad a_{i-1}(N+1)=(i-1) a_{i-2}(N)+N a_{i-1}(N), \quad(3 \leq i \leq N+1)$.

From (1), (12) and (13), we have

$$
\begin{equation*}
-\frac{t}{1+t} F^{2}=F^{(1)}=-\frac{1}{1+t} a_{1}(1) F^{2} \tag{17}
\end{equation*}
$$

Thus, by (17), we get $a_{1}(1)=1$. By (15), we see that
(18) $a_{1}(N+1)=N a_{1}(N)=N(N-1) a_{1}(N-1)=\cdots=N!a_{1}(1)=N!$,
and

$$
\begin{align*}
a_{N+1}(N+1) & =(N+1) a_{N}(N)=(N+1) N a_{N-1}(N-1) \tag{19}\\
& =\cdots=(N+1) N \cdots 2 a_{1}(1)=(N+1)!
\end{align*}
$$

From (18) and (19), we have

$$
\begin{array}{ll}
a_{1}(1)=0!=1, & a_{1}(2)=1!, \tag{20}\\
a_{1}(1)=1!=1, & a_{1}(3)=2!, \ldots, a_{1}(N)=(N-1)! \\
a_{2}(2)=2! & a_{3}(3)=3!, \ldots, a_{N}(N)=N!
\end{array}
$$

That is, the matrix $\left(a_{i}(j)\right)_{1 \leq i, j \leq N}$ is given by

$$
\left[\begin{array}{ccccccc}
0! & 1! & 2! & 3! & \cdots & \cdots & (N-1)! \\
& 2! & & & & & \\
& & 3! & & & & \\
& & & \ddots & & & \\
& & 0 & & \ddots & & \\
& & & & & \ddots & \\
& & & & & & N!
\end{array}\right]
$$

By (16), we get

$$
\begin{equation*}
a_{2}(N+1)=2 a_{1}(N)+N a_{2}(N) . \tag{21}
\end{equation*}
$$

Thus, from (21), we have
(22)

$$
\begin{aligned}
& a_{2}(N+1) \\
= & 2 a_{1}(N)+N a_{2}(N)=2(N-1)!+N a_{2}(N) \\
= & 2(N-1)!+N\left(2 a_{1}(N-1)+(N-1) a_{2}(N-1)\right) \\
= & 2(N-1)!+2 N(N-2)!+N(N-1) a_{2}(N-1) \\
= & 2 N!\left(\frac{1}{N}+\frac{1}{N-1}\right)+(N)_{2} a_{2}(N-1) \\
= & 2 N!\left(\frac{1}{N}+\frac{1}{N-1}\right)+(N)_{2}\left(2 a_{1}(N-2)+(N-2) a_{2}(N-2)\right) \\
= & 2 N!\left(\frac{1}{N}+\frac{1}{N-1}\right)+(N)_{2}\left(2(N-3)!+(N-2) a_{2}(N-2)\right) \\
= & 2 N!\left(\frac{1}{N}+\frac{1}{N-1}+\frac{1}{N-2}\right)+(N)_{3} a_{2}(N-2)=\cdots \\
= & 2 N!\left(\frac{1}{N}+\frac{1}{N-1}+\cdots+\frac{1}{N-(N-2)}\right) \\
& +(N)_{N-1} a_{2}(N-(N-2)) \\
= & 2 N!\left(\frac{1}{N}+\frac{1}{N-1}+\cdots+\frac{1}{2}+1-1\right)+N!a_{2}(2) \\
= & 2 N!\left(H_{N}-1\right)+2!N!=2 N!H_{N},
\end{aligned}
$$

where $H_{N}=H_{N, 1}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{N}$ is the harmonic number.
From (22), we have
(23) $a_{3}(N+1)$

$$
\begin{aligned}
= & 3 a_{2}(N)+N a_{3}(N) \\
= & 3 \cdot 2 \cdot(N-1)!H_{N-1}+N a_{3}(N) \\
= & 3!(N-1)!H_{N-1}+N a_{3}(N) \\
= & 3!(N-1)!H_{N-1}+N\left\{3 a_{2}(N-1)+(N-1) a_{3}(N-1)\right\} \\
= & 3!(N-1)!H_{N-1}+N\left\{3 \cdot 2(N-2)!H_{N-2}+(N-1) a_{3}(N-1)\right\} \\
= & 3!(N-1)!H_{N-1}+3!N(N-2)!H_{N-2}+N(N-1) a_{3}(N-1) \\
= & 3!N!\left(\frac{H_{N-1}}{N}+\frac{H_{N-2}}{N-1}\right)+N(N-1) a_{3}(N-1) \\
= & 3!N!\left(\frac{H_{N-1}}{N}+\frac{H_{N-2}}{N-1}\right) \\
& +N(N-1)\left\{3 a_{2}(N-2)+(N-2) a_{3}(N-2)\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & 3!N!\left(\frac{H_{N-1}}{N}+\frac{H_{N-2}}{N-1}\right) \\
& +N(N-1)\left\{3!(N-3)!H_{N-3}+(N-2) a_{3}(N-2)\right\} \\
= & 3!N!\left(\frac{H_{N-1}}{N}+\frac{H_{N-2}}{N-1}+\frac{H_{N-3}}{N-2}\right)+N(N-1)(N-2) a_{3}(N-2) \\
= & \cdots \\
= & 3!N!\left(\frac{H_{N-1}}{N}+\frac{H_{N-2}}{N-1}+\cdots+\frac{H_{N-(N-2)}}{N-(N-3)}\right)+(N)_{N-2} 3! \\
= & 3!N!H_{N, 2},
\end{aligned}
$$

where we put
(24) $\quad H_{N, 2}=\frac{H_{N-1}}{N}+\frac{H_{N-2}}{N-1}+\cdots+\frac{H_{1}}{2}+\frac{H_{0}}{1}, \quad H_{0}=H_{0,1}=0$.

By (16) and (23), we also get

$$
\begin{align*}
& a_{4}(N+1) \tag{25}\\
= & 4 a_{3}(N)+N a_{4}(N) \\
= & 4 \cdot 3!(N-1)!H_{N-1,2}+N a_{4}(N) \\
= & 4!(N-1)!H_{N-1,2}+N a_{4}(N) \\
= & 4!(N-1)!H_{N-1,2} \\
& +N\left\{4!(N-2)!H_{N-2,2}+(N-1) a_{4}(N-1)\right\} \\
= & 4!N!\left\{\frac{H_{N-1,2}}{N}+\frac{H_{N-2,2}}{N-1}\right\}+(N)_{2} a_{4}(N-1) \\
= & 4!N!\left\{\frac{H_{N-1,2}}{N}+\frac{H_{N-2,2}}{N-1}\right\} \\
& +(N)_{2}\left\{4!(N-3)!H_{N-3,2}+(N-2) a_{4}(N-2)\right\} \\
= & 4!N!\left\{\frac{H_{N-1,2}}{N}+\frac{H_{N-2,2}}{N-1}+\frac{H_{N-3,2}}{N-2}\right\}+(N)_{3} a_{4}(N-2) \\
= & \cdots \\
= & 4!N!\left\{\frac{H_{N-1,2}}{N}+\frac{H_{N-2,2}}{N-1}+\cdots+\frac{H_{N-(N-3), 2}}{N-(N-4)}\right\}+(N)_{N-3} a_{4}(4) \\
= & 4!N!H_{N, 3},
\end{align*}
$$

where we put

$$
\begin{equation*}
H_{N, 3}=\frac{H_{N-1,2}}{N}+\frac{H_{N-2,2}}{N-1}+\cdots+\frac{H_{0,2}}{1}, \quad H_{0,2}=0 . \tag{26}
\end{equation*}
$$

Note that

$$
H_{1,2}=\frac{H_{0}}{1}=0, \quad H_{2,2}=\frac{H_{1}}{2}=\frac{1}{2} .
$$

Continuing this process, we have

$$
\begin{equation*}
a_{j}(N)=j!(N-1)!H_{N-1, j-1}, \quad(j \in \mathbb{N}), \tag{27}
\end{equation*}
$$

where we define

$$
\begin{align*}
H_{N, 1} & =H_{N}=1+\frac{1}{2}+\cdots+\frac{1}{N} \tag{28}\\
H_{N, j} & =\frac{H_{N-1, j-1}}{N}+\frac{H_{N-2, j-1}}{N-1}+\cdots+\frac{H_{0, j-1}}{1}, \\
H_{0, j-1} & =0 \quad(2 \leq j \leq N)
\end{align*}
$$

Therefore, by (11) and (27), we obtain the following theorem.
Theorem 1. For $N \in \mathbb{N}$, let us consider the following non-linear differential equation with respect to t :

$$
\begin{equation*}
F^{(N)}(t)=\frac{(-1)^{N}}{(1+t)^{N}} \sum_{j=2}^{N+1}(j-1)!(N-1)!H_{N-1, j-2} F^{j}, \tag{30}
\end{equation*}
$$

where
$H_{N, 0}=1 \quad$ for all N,
$H_{N, 1}=H_{N}=1+\frac{1}{2}+\cdots+\frac{1}{N}$,
$H_{N, j}=\frac{H_{N-1, j-1}}{N}+\frac{H_{N-2, j-1}}{N-1}+\cdots+\frac{H_{0, j-1}}{1}, \quad H_{0, j-1}=0 \quad(2 \leq j \leq N)$.
Then $F=F(t)=\frac{1}{\log (1+t)}$ is a solution of (30).
From (2), we note that

$$
\begin{equation*}
F(t)=\frac{1}{\log (1+t)}=\sum_{n=1}^{\infty} b_{n} \frac{t^{n-1}}{n!}+\frac{1}{t}=\sum_{n=0}^{\infty} \frac{b_{n}}{n+1} \frac{t^{n}}{n!}+\frac{1}{t} . \tag{31}
\end{equation*}
$$

Thus, by (31), we get

$$
\begin{align*}
F^{(N-1)} & =\frac{d^{N-1}}{d t^{N-1}}\left(\frac{1}{\log (1+t)}\right) \tag{32}\\
& =\sum_{n=N-1}^{\infty} \frac{b_{n+1}}{n+1} \frac{t^{n-N+1}}{(n-N+1)!}+\frac{1}{t^{N}}(-1)^{N-1}(N-1)! \\
& =\sum_{n=0}^{\infty} \frac{b_{n+N}}{n+N} \frac{t^{n}}{n!}+\frac{1}{t^{N}}(-1)^{N-1}(N-1)!.
\end{align*}
$$

From (32), we have

$$
\begin{equation*}
t^{N} F^{(N-1)}=\sum_{n=N-1}^{\infty} \frac{b_{n+1}}{n+1} \frac{t^{n+1}}{(n-N+1)!}+(-1)^{N-1}(N-1)! \tag{33}
\end{equation*}
$$

$$
=\sum_{n=N}^{\infty} \frac{b_{n}}{n} \frac{t^{n}}{(n-N)!}+(-1)^{N-1}(N-1)!.
$$

Thus, by (33), we get

$$
\begin{align*}
& (1+t)^{N} t^{N+1} F^{(N)}(t) \tag{34}\\
= & (1+t)^{N} \sum_{n=N+1}^{\infty} \frac{b_{n}}{n} \frac{t^{n}}{(n-N-1)!}+(-1)^{N} N!(1+t)^{N} \\
= & \left(\sum_{l=0}^{\infty}\binom{N}{l} t^{l}\right)\left(\sum_{m=N+1}^{\infty} \frac{b_{m}}{m} \frac{t^{m}}{(m-N-1)!}\right)+(-1)^{N} N!\sum_{n=0}^{\infty}\binom{N}{n} t^{n} \\
= & \sum_{n=N+1}^{\infty}\left(\sum_{l=0}^{n-N-1}\binom{N}{l} \frac{b_{n-l}}{n-l} n \cdots(n-l-N)\right) \frac{t^{n}}{n!}+(-1)^{N} N!\sum_{n=0}^{N}(N)_{n} \frac{t^{n}}{n!} .
\end{align*}
$$

The higher-order Bernoulli numbers of the second kind is defined by the generating function to be

$$
\left(\frac{t}{\log (1+t)}\right)^{k}=\sum_{n=0}^{\infty} b_{n}^{(k)} \frac{t^{n}}{n!}, \quad(\text { see }[3,5,7,14])
$$

Indeed, we note that $b_{n}^{(k)}=B_{n}^{(n-k+1)}(1)$.
From Theorem 1, we have
(35) $(1+t)^{N} t^{N+1} F^{(N)}(t)$

$$
\begin{aligned}
& =(-1)^{N} \sum_{j=2}^{N+1}(j-1)!(N-1)!H_{N-1, j-2} t^{N+1} F^{j} \\
& =(-1)^{N} \sum_{j=2}^{N+1}(j-1)!(N-1)!H_{N-1, j-2}\left(\frac{t}{\log (1+t)}\right)^{j} t^{N+1-j} \\
& =(-1)^{N} \sum_{j=0}^{N-1}(N-j)!(N-1)!H_{N-1, N-1-j} t^{j} \sum_{m=0}^{\infty} b_{m}^{(N+1-j)} \frac{t^{m}}{m!}
\end{aligned}
$$

$$
=(-1)^{N} \sum_{n=0}^{\infty}\left(\sum_{j=0}^{\min \{n, N-1\}}(N-j)!(N-1)!H_{N-1, N-1-j} \frac{b_{n-j}^{(N+1-j)} n!}{(n-j)!}\right) \frac{t^{n}}{n!}
$$

$$
=\sum_{n=0}^{\infty}\left\{(-1)^{N} \sum_{j=0}^{\min \{n, N-1\}}(N-j)!(N-1)!\right.
$$

$$
\left.\times H_{N-1, N-1-j} n(n-1) \cdots(n-j+1) b_{n-j}^{(N+1-j)}\right\} \frac{t^{n}}{n!}
$$

Therefore, by (34) and (35), we obtain the following theorem.

Theorem 2. For $n \geq 0$, we have

$$
\begin{aligned}
& (-1)^{N} \sum_{j=0}^{\min \{n, N-1\}}(N-j)!(N-1)!H_{N-1, N-1-j}(n)_{j} b_{n-j}^{(N+1-j)} \\
= & \begin{cases}(-1)^{N} N!(N)_{n} & \text { if } 0 \leq n \leq N, \\
\sum_{l=0}^{n-N-1}\binom{N}{l} \frac{b_{n-l}}{n-l}(n)_{l+N+1} & \text { if } n \geq N+1 .\end{cases}
\end{aligned}
$$

Acknowledgements. The authors would like to thank for the referee for his valuable suggestions and comments.

References

[1] S. Araci and M. Acikgoz, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 3, 399-406.
[2] A. Bayad and T. Kim, Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 20 (2010), no. 2, 247-253.
[3] L. Comtet, Advanced Combinatorics, Revised and enlarged ed., D. Reidel Publishing Co., Dordrecht, 1974.
[4] K.-W. Hwang, D. V. Dolgy, D. S. Kim, T. Kim, and S. H. Lee, Some theorems on Bernoulli and Euler numbers, Ars Combin. 109 (2013), 285-297.
[5] H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge, 1988.
[6] D. Kang, J. Jeong, S.-H. Lee, and S.-J. Rim, A note on the Bernoulli polynomials arising from a non-linear differential equation, Proc. Jangjeon Math. Soc. 16 (2013), no. 1, 37-43.
[7] D. S. Kim and T. Kim, Higher-order Cauchy of the first kind and poly-Cauchy of the first kind mixed type polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 4, 621-636.
[8] D. S. Kim, T. Kim, Y.-H. Kim, and D. V. Dolgy, A note on Eulerian polynomials associated with Bernoulli and Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 3, 379-389.
[9] G. Kim, B. Kim, and J. Choi, The DC algorithm for computing sums of powers of consecutive integers and Bernoulli numbers, Adv. Stud. Contemp. Math. (Kyungshang) 17 (2008), no. 2, 137-145.
[10] T. Kim, q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients, Russ. J. Math. Phys. 15 (2008), no. 1, 51-57.
[11] , Identities involving Frobenius-Euler polynomials arising from non-linear differential equations, J. Number Theory 132 (2012), no. 12, 2854-2865.
[12] Y.-H. Kim and K.-W. Hwang, Symmetry of power sum and twisted Bernoulli polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 18 (2009), no. 2, 127-133.
[13] H. Ozden, I. N. Cangul, and Y. Simsek, Remarks on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp. Math. (Kyungshang) 18 (2009), no. 1, 41-48.
[14] S. Roman, The umbral calculus, Pure and Applied Mathematics, vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984.
[15] E. Şen, Theorems on Apostol-Euler polynomials of higher order arising from Euler basis, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 2, 337-345.
[16] Y. Simsek, Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions, Adv. Stud. Contemp. Math. (Kyungshang) 16 (2008), no. 2, 251-278.

Dae San Kim
Department of Mathematics
Sogang University
Seoul 121-742, Korea
E-mail address: dskim@sogang.ac.kr
Taekyun Kim
Department of Mathematics
Tianjin Polytechnic University
Tianjin, P. R. China
AND
Department of Mathematics
Kwangwoon University
Seoul 139-701, Korea
E-mail address: tkkim@kw.ac.kr, kimtk2015@gmail.com

