• Title/Summary/Keyword: screw spacing

Search Result 15, Processing Time 0.02 seconds

Experimental and numerical study of an innovative 4-channels cold-formed steel built-up column under axial compression

  • G, Beulah Gnana Ananthi;Roy, Krishanu;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.513-538
    • /
    • 2022
  • This paper reports on experiments addressing the buckling and collapse behavior of an innovative built-up cold-formed steel (CFS) columns. The built-up column consists of four individual CFS lipped channels, two of them placed back-to-back at the web using two self-drilling screw fasteners at specified spacing along the column length, while the other two channels were connected flange-to-flange using one self-drilling screw fastener at specified spacing along the column length. In total, 12 experimental tests are reported, covering a wide range of column lengths from stub to slender columns. The initial geometric imperfections and material properties were determined for all test specimens. The effect of screw spacing, load-versus axial shortening behaviour and buckling modes for different lengths and screw spacing were investigated. Nonlinear finite element (FE) models were also developed, which included material nonlinearities and initial geometric imperfections. The FE models were validated against the experimental results, both in terms of axial capacity and failure modes of built-up CFS columns. Furthermore, using the validated FE models, a parametric study was conducted which comprises 324 models to investigate the effect of screw fastener spacing, thicknesses and wide range of lengths on axial capacity of back-to-back and flange-to-flange built-up CFS channel sections. Using both the experimental and FE results, it is shown that design in accordance with the American Iron and Steel Institute (AISI) and Australia/New Zealand (AS/NZS) standards is slightly conservative by 6% on average, while determining the axial capacity of back-to-back and flange-to-flange built-up CFS channel sections.

Small Scaled Pull-out Tests on Group Effect of Screw Anchors in Saturated Sand (포화토내 나선형 앵커의 무리효과에 관한 실험적 고찰)

  • 김홍택;권영호;박사원;최영하
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.387-394
    • /
    • 2000
  • In the present study, laboratory pull-out tests with screw anchors are carried out to investigate behavior characteristics of underground structures applied uplift seepage forces. Small scaled pull-out tests in sand were conducted under saturated condition. And then, it was observed that the upward displacement as well as the pullout load varied with spacing of the anchor. Also, analyses have been performed with the aim of pointing out the effects of various parameters on the group effect of the screw anchors.

  • PDF

Nonlinear behavior of axially loaded back-to-back built-up cold-formed steel un-lipped channel sections

  • Roy, Krishanu;Ting, Tina Chui Huon;Lau, Hieng Ho;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.233-250
    • /
    • 2018
  • Back-to-back built-up cold-formed steel un-lipped channel sections are used in cold-formed steel structures; such as trusses, wall frames and portal frames. In such built-up columns, intermediate fasteners resist the buckling of individual channel-sections. No experimental tests or finite element analyses have been reported in the literature for back-to-back built-up cold-formed steel un-lipped channel sections and specially investigated the effect of screw spacing on axial strength of such columns. The issue is addressed in this paper. The results of 95 finite element analyses are presented covering stub to slender columns. The finite element model is validated against the experimental tests recently conducted by authors for back-to-back built-up cold-formed steel lipped channel sections. The verified finite element model is then used for the purposes of a parametric study to investigate the effect of screw spacing on axial strength of back-to-back built-up cold-formed steel un-lipped channel sections. Results are compared against the built-up lipped channel sections and it is shown that the axial strength of un-lipped built-up sections are 31% lesser on average than the built-up lipped channel sections. It was also found that the American Iron and Steel Institute (AISI) and the Australian and New Zealand Standards were over-conservative by around 15% for built-up columns failed through overall buckling, however AISI and AS/NZS were un-conservative by around 8% for built-up columns mainly failed by local buckling.

A numerical study on a chaotic stirring in a model for a single screw extruder (압출용 스크류 모델에서의 혼돈적 교반)

  • Seo,Yong-Gwon;Kim,Yong-Gyun;Mun, Jong-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1615-1623
    • /
    • 1997
  • Numerical study on the chaotic stirring of the screw extruder model proposed has been performed. The velocity field was used in obtaining the trajectories of passive particles for studying the stirring effect of the screw extruder. Two nonlinear dynamical tools, that are Poincare sections and Lyapunov exponents, were used in analysing the stirring effect. The Poincare sections and the Lyapunov exponents show that the stirring effect is most satisfactory, when n(the number of flights in a section) is 1, for the case a (aspect ratio ; flight height divided by the spacing between flights) being O.1. It is also required to set n=3, or 5 at a= 0.2, 0.3 for a uniform stirring.

An Experimental Study on the Shear Behaviour of Face Brick Wall Tied with the Screw Connector (나선형 긴결철물을 이용한 조적치장벽체의 전단거동에 관한 실험연구)

  • Kwon, Ki Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.145-154
    • /
    • 2007
  • As buildings are built higher and their service life made longer, face brick walls are also required to be constructed in an easy and systematic manner, and to ensure their satisfying structural performance, inspectingly, against lateral load. Therefore this study aims to investigate the structural performance of face brick walls constructed by a new method using screwed stainless steel connectors and provide fundamental experiment data for field application of this method. The results of this study indicated that the face brick wall tied with screw connectors had better shear capacity against rocking motion than that of the wall constructed with ordinary tie bars when their tie spacing was the same. Based on the good performance of the wall tied with the screw connector, it is also expected that the spiral anchors developed in this study can possibly applied to high-rise by adjusting the spacing of the anchors considering the difference of dimensions.

Seismic performances of RC columns reinforced with screw ribbed reinforcements connected by mechanical splice

  • Lee, Se-Jung;Lee, Deuck Hang;Kim, Kang Su;Oh, Jae-Yuel;Park, Min-Kook;Yang, Il-Seung
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.131-149
    • /
    • 2013
  • Various types of reinforcement splicing methods have been developed and implemented in reinforced concrete construction projects for achieving the continuity of reinforcements. Due to the complicated reinforcement arrangements and the difficulties in securing bar spacing, the traditional lap splicing method, which has been widely used in reinforced concrete constructions, often shows low constructability and difficulties in quality control. Also, lap spliced regions are likely to be over-reinforced, which may not be desirable in seismic design. On the other hand, mechanical splicing methods can offer simple and clear arrangements of reinforcement. In order to utilize the couplers for the ribbed-deformed bars, however, additional screw processing at the ends of reinforcing bars is typically required, which often lead to performance degradations of reinforced concrete members due to the lack of workmanship in screw processing or in adjusting the length of reinforcing bars. On the contrary, the use of screw-ribbed reinforcements can easily solve these issues on the mechanical splicing methods, because it does not require the screw process on the bar. In this study, the mechanical coupler suitable for the screw-ribbed reinforcements has been developed, in which any gap between the reinforcements and sleeve device can be removed by grouting high-flow inorganic mortar. This study presents the uniaxial tension tests on the screw-ribbed reinforcement with the mechanical sleeve devices and the cyclic loading tests on RC columns with the developed coupler. The test results show that the mechanical sleeve connection developed in this study has an excellent splicing performance, and that it is applicable to reinforced concrete columns with a proper confinement by hoop reinforcement.

Finite element modelling of back-to-back built-up cold-formed stainless-steel lipped channels under axial compression

  • Roy, Krishanu;Lau, Hieng Ho;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.37-66
    • /
    • 2019
  • In cold-formed steel structures, such as trusses, wall frames and portal frames, the use of back-to-back built-up cold-formed stainless-steel lipped channels as compression members are becoming increasingly popular. The advantages of using stainless-steel as structural members are corrosion resistance and durability, compared with carbon steel. The AISI/ASCE Standard, SEI/ASCE-8-02 and AS/NZS do not include the design of stainless-steel built-up channels and very few experimental tests or finite element analyses have been reported in the literature for such back-to back cold-formed stainless-steel channels. Current guidance by the American Iron and Steel Institute (AISI) and the Australian and New Zealand (gAS/NZS) standards for built-up carbon steel sections only describe a modified slenderness approach, to consider the spacing of the intermediate fasteners. Thus, this paper presents a numerical investigation on the behavior of back-to-back cold-formed stainless-steel built-up lipped channels. Three different grades of stainless steel i.e., duplex EN1.4462, ferritic EN1.4003 and austenitic EN1.4404 have been considered. Effect of screw spacing on the axial strength of such built-up channels was investigated. As expected, most of the short and intermediate columns failed by either local-global or local-distortional buckling interactions, whereas the long columns, failed by global buckling. All three grades of stainless-steel stub columns failed by local buckling. A comprehensive parametric study was then carried out covering a wide range of slenderness and different cross-sectional geometries to assess the performance of the current design guidelines by AISI and AS/NZS. In total, 647 finite element models were analyzed. From the results of the parametric study, it was found that the AISI & AS/NZS are conservative by around 10 to 20% for cold-formed stainless-steel built-up lipped channels failed through overall buckling, irrespective of the stainless-steel grades. However, the AISI and AS/NZS can be un-conservative by around 6% for all three grades of stainless-steel built-up channels, which failed by local buckling.

The Method of Estimating Group Effect with Small Pull-out Tests of Screw Anchors (나선형 앵커의 실내인발시험을 이용한 무리효과 평가기법)

  • Park Si-Sam;Lee Hyung-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.123-131
    • /
    • 2005
  • In the present study, laboratory pull-out tests with screw anchors are carried out to investigate behavior characteristics of the anchors used in foundation system of underground structures which are applied to uplifting seepage forces. Small scaled pull-out tests in sand under saturated condition and dry condition were carried out. For estimating the group effects of the anchors, the upward displacement and the pullout load varied with spacing of the anchor were observed. The test results were compared with theoretical equation for the ultimate pull-out force. Also, the result of tests can be used to the finite element analysis program, $PENTAGON^{2D}$.

Study on axial compressive behavior of quadruple C-channel built-up cold-formed steel columns

  • Nie, Shaofeng;Zhou, Tianhua;Liao, Fangfang;Yang, Donghua
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.499-511
    • /
    • 2019
  • In this study, the axial compressive behavior of novel quadruple C-channel built-up cold-formed steel columns with different slenderness ratio was investigated, using the experimental and numerical analysis. The axial compressive capacity and failure modes of the columns were obtained and analyzed. The finite element models considering the geometry, material and contact nonlinearity were developed to simulate and analyze the structural behavior of the columns further. There was a great correlation between the numerical analyses and test results, which indicated that the finite element model was reasonable and accurate. Then influence of, slenderness ratio, flange width-to-thickness ratio and screw spacing on the mechanical behavior of the columns were studied, respectively. The tests and numerical results show that due to small slenderness ratio, the failure modes of the specimens are generally local buckling and distortional buckling. The axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns decrease with the increase of maximum slenderness ratio. When the screw spacing is ranging from 150mm to 450mm, the axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns change little. The axial compressive capacity of quadruple C-channel built-up cold-formed steel columns increases with the decrease of flange width-thickness ratio. A modified effective length factor is proposed to quantify the axial compressive capacity of the quadruple C-channel built-up cold-formed steel columns with U-shaped track in the ends.

Numerical Parametric Analysis of the Ultimate Loading-Capacity of Channel Purlins with Screw-Fastened Sheeting

  • Zhang, Yingying;Xue, Jigang;Song, Xiaoguang;Zhang, Qilin
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1801-1817
    • /
    • 2018
  • This paper presents the numerical parametric analysis on the loading capacity of Channel purlins with screw-fastened sheeting, in which the effects of anti-sag bar and corrugated steel sheet on the ultimate capacity are studied. Results show that the setup of anti-sag bars can reduce the deformations and improve the ultimate capacity of C purlins. The traditional method of setting the anti-sag bars in the middle of the web is favorable. The changing of sheeting type, sheeting thickness and rib spacing has significant effects on the ultimate capacity of C purlins without anti-sag bars, compared with those with anti-sag bars. The proposed design formulas are relatively consistent with the calculations of EN 1993-1-3:2006, which is different from those of GB 50018-2002.