• Title/Summary/Keyword: screw loosening torque

Search Result 70, Processing Time 0.026 seconds

A STUDY OF SCREW LOOSENING AFTER DYNAMIC CONTINOUS FATIGUE TEST OF SEVERAL ABUTMENT SCREW (수종 임플랜트 지대주나사의 반복하중 후 나사풀림에 관한 연구)

  • Kim Jin-Man;Han Jung-Suk;Lee Sun-Hyung;Yang Jae-Ho;Lee Jae-Bong;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.519-531
    • /
    • 2003
  • Statement of problem : Chronic implant screw loosening remains a problem in restorative practices. Some implant manufactureres have introduced abutment screws with treated material, surfaces and macrostructures in an effort to reduce potential loosening. Purpose : This study evaluated the materials and loading cycles on detorque value after dynamic continous fatigue test in the sinulated conditions of posterior single restoration. Material and method : Fourteen of each of the following abutment screws - titanium alloy, gold alloy, gold-tite, and titanium alloy modified - were used in test. SEM is used to verify macrostructures of each screws. $ZrO_2/Al_2O_3$ composite abutment was tightened on $4{\times}10.0mm$ titanium external implant at 30 Ncm. Cyclic loading machine delivered dynamic loading forces between 20 and 320N for 100,000, 200,000, 300,000, 500,000, and 1,000,000 cycles at frequencies 14Hz. Torque and detorque value after loading was measured. Results : All measued screws had different screw length and thread form. Titanium modified screw had greater detorque value than others before and after cyclic loadings(p<0.05). All abutment screws had no significant change in mean percentage of detorque value after loading to initial value after less than 500.000 cyclic loadings, but significant lower value after 1,000,000 cycles(p<0.05). Conclusion : Within limintations of this study all abutment screws may be loosend after about 1 year use. Annual check-up is nessasary to prevent screw loosening.

Influence of Implant Abutment Systems on Detorque Value and Screw Joint Stability (임플랜트 지대주 종류가 나사풀림력과 연결부의 안정성에 미치는 영향)

  • Bae, Byung-Ryong;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.97-109
    • /
    • 2010
  • Purpose : This study was designed to evaluate the influence of implant abutment materials on detorque value and screw joint stability before and after dynamic fatigue test. Materials & Methods : The external hexagonal fixture and three different groups of abutment (titanium abutments, zirconia abutments, and UCLA abutments) were used. The detorque value before loading and after loading (cyclic loading up to $10^5$ cycles) of the abutment screw were measured. Result : 1. There was no significant difference in detorque value before loading among the each group. 2. There was no significant difference in detorque value after loading among the each group. 3. Detorque values before and after cyclic loading in each group were not significantly different. 4. There was no significant difference in loss percentage of removal torque before loading among the each group. 5. There was no significant difference in loss percentage of removal torque after loading among the each group. 6. There was no significant difference in loss percentage of removal torque according to loading among the each group. Conclusion : Short term screw loosening of three types of abutment was not significantly different. When bite force was applied, there was no significant difference in screw loosening between before loading and after loading.

The effect of a titanium socket with a zirconia abutment on screw loosening after thermocycling in an internally connected implant: a preliminary study (내부연결 임플란트용 타이타늄 소켓을 이용한 지르코니아 지대주에서 열순환이 나사풀림에 미치는 영향: 예비연구)

  • Kyung, Kyu-Young;Cha, Hyun-Suk;Lee, Joo-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.2
    • /
    • pp.114-118
    • /
    • 2017
  • Purpose: The aim of this study was to investigate the effects of a titanium component for the zirconia abutment in the internal connection implant system on screw loosening under thermocycling conditions. Materials and Methods: Internal connection titanium abutments and external connection zirconia abutments with titanium sockets were connected respectively to screw-shaped internal connection type titanium implants with 30 Ncm tightening. These implant-screw-abutment assemblies were divided into two groups of five specimens each; titanium abutments as control and zirconia abutments with titanium sockets as experimental group. The specimens were subjected to 2,000 thermocycles in water baths at $5^{\circ}C$ and $55^{\circ}C$, with 60 seconds of immersion at each temperature. The removal torque values (RTVs) of the abutment screws of the specimen were measured before and after thermocycling. RTVs pre- and post-thermocycling were investigated in statistics. Results: There was not screw loosening identified by tactile and visual inspection in any of the specimens during or after thermocycling. The mean RTV difference for the control group and the experimental group were $-1.34{\pm}2.53Ncm$ and $-1.26{\pm}2.06Ncm$, respectively. Statistical analysis using an independent t-test revealed that no significant differences were found in the mean RTV difference of the groups (P > 0.05). Conclusion: Within the limitations of this in vitro study, the titanium socket for the zirconia abutment did not show a significant effect on screw loosening under thermal stress compared to the titanium abutment in the internal connection implant.

Stability of implant screw joint (임플란트 나사의 안정성)

  • Chung, Chae-Heon;Kwak, Jong-Ha;Jang, Doo-IK
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.2
    • /
    • pp.125-137
    • /
    • 2003
  • The use of screw-retaind prosthesis on an osseointegrated implant is a popular treatment modality offering relative ease in the removal of the restoration. One of the complications associated with this modality is the loosening of the abutment and coping screws. Loosening of the screws results in patient dissatisfaction, frustration to the dentist and, if left untreated, component fracture. There are several factors which contribute to the loosening of implant components which can be controlled by the restorative dentist and lab technician. This article offers pratical solutions to minimize this clinical problem and describes the factors involved in maintaining a stable screw joint assembly. To avoid joint failure, adherence to specific clinical, as well as mechanical, parameters is critical. With respect to hardware, optimal tolerance and fit, minimal rotational play, best physical properties, a predictable interface, and optimal torque application are mandatory. In the clinical arena, optimal implant distribution; load in line with implant axis; optimal number, diameter, and length of implants; elimination of cantilevers; optimal prosthesis fit; and occlusal load control are equally important.

Influence of internal connection length on screw loosening in internal connection implants (내측 연결 임플란트에서 지대주 내부길이가 나사 풀림에 미치는 영향)

  • Kim, Ji-Sun;Park, Young-Bum;Choi, Hynmin;Kim, Sungtae;Kim, Hyeon Cheol;Kim, Sun Jai;Moon, Hong-Seok;Lee, Jae-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.3
    • /
    • pp.251-257
    • /
    • 2017
  • Purpose: The purpose of this study was to evaluate whether the internal abutment length affected screw stability in an internal connection implant. Materials and methods: Twenty long internal connection implants (Replus system, $4.7{\times}11.5mm$) were selected for this investigation. Abutments were assigned to four groups depending on the length of the internal connection (abutments with internal lengths of 1, 2, 3, and 4 mm, respectively). Each implant fixture specimen was embedded in resin medium and connected to an abutment with an abutment screw. A load of 100 N, applied at an angle of $30^{\circ}$ to the long axis of the implant, was repeated for $1.0{\times}10^6$ cycles. Reverse torque values (RTV) were recorded before and after loading, and the change in RTV was calculated. Data were analyzed with the Kruskal-Wallis test. Results: The change in RTV was not significantly different among the groups (P>.05). Screw loosening and fractures were not observed in any groups, and joint stability was maintained. Conclusion: The internal length of the abutment may not significantly affect the degree of screw loosening.

A study on accuracy and application of the implant torque controller used in dental clinic (임상에서 사용하고 있는 임플란트 토크조절기의 정확도와 적용에 관한 사용실태)

  • Joo, Young-Hun;Lee, Jin-Han
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.197-205
    • /
    • 2011
  • Purpose: This study was to evaluate the accuracy of the implant torque controller used in dental clinics and to investigate whether it was applied appropriately. Materials and methods: Fifty dentists who work in dental clinics were enrolled in this study. Dental (implant) practice career, experience frequency of implant screw loosening and fracture, education of implant torque controller application and infection control methods were included in the survey. 25 Ncm and 30 Ncm of the tightening torque applied to the implant screw were measured by 50 clinicians. After measuring the torque value by using the torque controller, the torque mean according to where education about the implant torque controller was received was analyzed with independent t-test at the significance level of 0.05. Results: The torque controller used in private dental clinics showed 4.78% error ratio. When 50 dentists applied 25 Ncm to the implant screw was $29.0{\pm}8.4$ Ncm, and that in 30 Ncm was $34.3{\pm}9.1$ Ncm. Statistical significance was found between the group that was educated about implant torque application and the group that was not educated. Conclusion: During the prosthodontic treatment with implant, there was difference between actual applied torsion force and the amount torque controller indicated. Clinicians have to not only be well-informed about the accurate usage method of the torque controller, but also keep and manage the torque controller so as to maintain continuous and accurate torque values. Through this, it is considered to achieve clinical results to minimize problems of screw loosening or fracture.

A comparative biomechanical study of original and compatible titanium bases: evaluation of screw loosening and 3D-crown displacement following cyclic loading analysis

  • Oziunas, Rimantas;Sakalauskiene, Jurgina;Jegelevicius, Darius;Januzis, Gintaras
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • PURPOSE. This study evaluated screw loosening and 3D crown displacement after cyclic loading of implant-supported incisor crowns cemented with original titanium bases or with three compatible, nonoriginal components. MATERIALS AND METHODS. A total of 32 dental implants were divided into four groups (n = 8 each): Group 1 used original titanium bases, while Groups 2-4 used compatible components. The reverse torque value (RTV) was evaluated prior to and after cyclic loading (1,200,000 cycles). Samples (prior to and after cyclic loading) were scanned with a microcomputed tomography (micro-CT). Preload and postload files were superimposed by 3D inspection software, and 3D crown displacement analysis was performed using root-mean-square (RMS) values. All datasets were analyzed using one-way ANOVA and Tukey's post hoc analysis. RESULTS. Significant variations were observed in the postload RTV, depending on the titanium base brand (P < .001). The mean postload RTVs were significantly higher in Groups 1 and 2 than in the other study groups. While evaluating 3D crown displacement, the lowest mean RMS value was shown in the original Group 1, with the highest RMS value occurring in Group 4. CONCLUSION. Within the limitations of this in vitro study and under the implemented conditions, it was concluded that the manufacturer brand of the titanium base significantly influenced screw loosening following the fatigue test and influenced 3D crown displacement after cyclic loading.

THE EFFECT OF INTERNAL IMPLANT-ABUTMENT CONNECTION AND DIAMETER ON SCREW LOOSENING

  • Ha, Chun-Yeo;Kim, Chang-Whe;Lim, Young-Jun;Jang, Kyung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.379-392
    • /
    • 2005
  • Statement of problem. One of the common problems of dental implant prosthesis is the loosening of the screw that connects each component, and this problem is more common in single implant-supported prostheses with external connection, and in molars. Purpose. The purposes of this study were: (1) to compare the initial abutment screw detorque values of the six different implant-abutment interface designs, (2) to compare the detorque values of the six different implant-abutment interface designs after cyclic loading, (3) to compare the detorque values of regular and wide diameter implants and (4) to compare the initial detorque values with the detorque values after cyclic loading. Material and methods. Six different implant-abutment connection systems were used. The cement retained abutment and titanium screw of each system were assembled and tightened to 32Ncm with digital torque gauge. After 10 minutes, initial detorque values were measured. The custom titanium crown were cemented temporarily and a cyclic sine curve load(20 to 320N, 14Hz) was applied. The detorque values were measured after cyclic loading of one million times by loading machine. One-way ANOVA test, scheffe’s test and Mann-Whitney U test were used. Results. The results were as follows : 1. The initial detorque values of six different implant-abutment connections were not significantly different(p>0.05). 2. The detorque values after one million dynamic cyclic loading were significantly different (p<0.05). 3. The SS-II regular and wide implant both recorded the higher detorque values than other groups after cyclic loading(p<0.05). 4. Of the wide implants, the initial detorque values of Avana Self Tapping Implant, MIS and Tapered Screw Vent, and the detorque values of MIS implant after cyclic loading were higher than their regular counterparts(p<0.05). 5. After cyclic loading, SS-II regular and wide implants showed higher detorque values than before(p<0.05).

Influence of Tightening Torque on Implant-Abutment Screw Joint Stability (조임회전력이 임플랜트-지대주 나사 연결부의 안정성에 미치는 영향)

  • Shin, Hyon-Mo;Jeong, Chang-Mo;Jeon, Yonung-Chan;Yun, Mi-Jeong;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.396-408
    • /
    • 2008
  • Statement of problem: Within the elastic limit of the screw, the greater the preload, the tighter and more secure the screw joint. However, additional tensile forces can incur plastic deformation of the abutment screw when functional loads are superimposed on preload stresses, and they can elicit the loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum preload that will maximize fatigue life and simultaneously offer a reasonable degree of protection against loosening. Another critical factor in addition to the applied torque which can affect the amount of preload is the joint connection type between implant and abutment. Purpose: The purpose of this study was to evaluate the influence of tightening torque on the implant-abutment screw joint stability. Material and methods: Respectively, three different amount of tightening torque (20, 30, and 40 Ncm) were applied to implant systems with three different joint connections, one external butt joint and two internal cones. The initial removal torque value and the postload (cyclic loading up to 100,000 cycles) removal torque value of the abutment screw were measured with digital torque gauge. Then rate of the initial and the postload removal torque loss were calculated for the comparison of the effect of tightening torques and joint connection types between implant and abutment on the joint stability. Results and conclusion: 1. Increase in tightening torque value resulted in significant increase in initial and postload removal torque value in all implant systems (P < .05). 2. Initial removal torque loss rates in SS II system were not significantly different when three different tightening torque values were applied (P > .05), however GS II and US II systems exhibited significantly lower loss rates with 40 Ncm torque value than with 20 Ncm (P < .05). 3. In all implant systems, postload removal torque loss rates were lowest when the torque value of 30 Ncm was applied (P < .05). 4. Postload removal torque loss rates tended to increase in order of SS II, GS II and US II system. 5. There was no correlation between initial removal torque value and postload removal torque loss rate (P > .05).

THE ASSESSMENT OF ABUTMENT SCREW STABILITY BETWEEN THE EXTERNAL AND INTERNAL HEXAGONAL JOINT UNDER CYCLIC LOADING

  • Lee, Tae-Sik;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jae-Bong;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.561-568
    • /
    • 2008
  • STATEMENT OF PROBLEM: Currently, many implant systems are developed and divided into two types according to their joint connection: external or internal connection. Regardless of the connection type, screw loosening is the biggest problem in implant-supported restoration. PURPOSE: The purpose of this study is to assess the difference in stability of abutment screws between the external and internal hexagonal connection types under cyclic loading. MATERIAL AND METHODS: Each of the 15 samples of external implants and internal abutments were tightened to 30 N/cm with a digital torque gauge, and cemented with a hemispherical metal cap. Each unit was then mounted in a $30^{\circ}$ inclined jig. Then each group was divided into 2 sub-groups based on different periods of cyclic loading with the loading machine (30 N/ cm - 300 N/cm,14 Hz: first group $1{\times}10^6$, $5{\times}10^6$ cyclic loading; second group $3{\times}10^6$, $3{\times}10^6$ for a total cyclic loading of $6{\times}10^6$) The removal torque value of the screw before and after cyclic loading was checked. SPSS statistical software for Windows was used for statistical analysis. Group means were calculated and compared by ANOVA, independent t-test, and paired t-test with ${\alpha}$=0.05. RESULTS: In the external hexagonal connection, the difference between the removal torque value of the abutment screw before loading, the value after $1{\tims}10^6$ cyclic loading, and the value after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading was not significant. The difference between the removal torque value after $3{\times}10^6$ cyclic loading and after $3{\times}10^6$, and additional $3{\times}10^6$ cyclic loading was not significant. In the internal hexagonal connection, the difference between the removal torque value before loading and the value after $1{\times}10^6$ cyclic loading was not significant, but the value after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading was reduced and the difference was significant (P < .05). In addition, in the internal hexagonal connection, the difference between the removal torque value after $3{\times}10^6$ cyclic loading and the value after $3{\times}10^6$, and additional $3{\times}10^6$ cyclic loading was not significant. CONCLUSION: The external hexagonal connection was more stable than the internal hexagonal connection after $1{\times}10^6$, and additional $5{\times}10^6$ cyclic loading (t = 10.834, P < .001). There was no significant difference between the two systems after $3{\times}10^6$, and additional $3{\times}10^6$ cycles.