• Title/Summary/Keyword: screw loosening torque

Search Result 70, Processing Time 0.024 seconds

Effect of cement washout on loosening of abutment screws and vice versa in screw- and cement- retained implant-supported dental prosthesis

  • Kim, Seok-Gyu;Chung, Chae-Heon;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.207-213
    • /
    • 2015
  • PURPOSE. The purpose of this study was to examine the abutment screw stability of screw- and cement-retained implant-supported dental prosthesis (SCP) after simulated cement washout as well as the stability of SCP cements after complete loosening of abutment screws. MATERIALS AND METHODS. Thirty-six titanium CAD/CAM-made implant prostheses were fabricated on two implants placed in the resin models. Each prosthesis is a two-unit SCP: one screw-retained and the other cemented. After evaluating the passive fit of each prosthesis, all implant prostheses were randomly divided into 3 groups: screwed and cemented SCP (Control), screwed and non-cemented SCP (Group 1), unscrewed and cemented SCP (Group 2). Each prosthesis in Control and Group 1 was screwed and/or cemented, and the preloading reverse torque value (RTV) was evaluated. SCP in Group 2 was screwed and cemented, and then unscrewed (RTV=0) after the cement was set. After cyclic loading was applied, the postloading RTV was measured. RTV loss and decementation ratios were calculated for statistical analysis. RESULTS. There was no significant difference in RTV loss ratio between Control and Group 1 (P=.16). No decemented prosthesis was found among Control and Group 2. CONCLUSION. Within the limits of this in vitro study, the stabilities of SCP abutment screws and cement were not significantly changed after simulated cement washout or screw loosening.

Comparison of the torque stability of Implant Torque Controllers

  • Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Korean Dental Science
    • /
    • v.2 no.1
    • /
    • pp.19-27
    • /
    • 2009
  • Tightening of the screws in implant restorations should be accurate and precise. If applied torque is too low, screw loosening would be occurred. With too high torque, the screw fracture might take place. Various torque generating devices are developed and employed to apply a proper torque. The purpose of this investigation was to determine and compare the accuracy of the torque controllers. In this study, 4 types of torque controllers were used; electronic torque controller, torque limiting device, torque indicating device and contra angle torque driver. Digital torque gauge was employed to measure the de-torque value. Thirty cycles of tightening and loosening were done with each torque controller. All implant torque controllers have shown slight errors and deviations. The torque liming device exhibited the most accurate data. No significant difference was found among the mean de-torque values of the electronic torque controller, torque indicating device and contra angle torque driver. In the limitation of this study, it would be recommended that the implant torque controllers should be checked whether uniformed and precise torque can be generated and a measuring error should be corrected.

  • PDF

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND PRELOAD OF DIFFERENT CONNECTION TYPES IMPLANT WITH INITIAL CLAMPING (임플랜트의 체결방식에 따른 초기조임력에 의한 응력분포 및 전하중에 관한 연구)

  • Lee Bum-Hyun;Chun Heoung-Jae;Lee Soo-Hong;Han Chong-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.197-206
    • /
    • 2006
  • Statement of problem: One of common problems associated with single teeth dental implant prosthetic is the loosening of screws that retain the implants. Purpose: The maintenance of screw joint stability is considered a function of the preload achieved in the screw when the suggested initial tightening torque is applied. The purpose of this study was to investigate acquired preload after initial clamping torque for estimating screw joint stability. Material and methods: A comparative study on the effect of initial clamping of two types of implant systems with different connections was conducted Three dimensional non-linear finite element analysis is adopted to compare the characteristics of screw preloads and stress distributions between two different types of implant systems composed with abutment, screw, and fixture under the same loading and boundary conditions. Results: 1. When the initial clamping torque of 32Ncm was applied to the implant systems, all types of implants generated the maximum effective stress at the first helix region of screw. 2. Morse taper connection types of implants generate lower stress distributions compared to those by butt joint connection types or implants due to large contact surface between abutment and fixture. 3. The internal types of implant systems with friction grip type implant systems have higher resistance to screw loosening than that of the external types of implant systems since the internal types of implant systems generated larger preload than that generated by the external types for the same tightening moments.

Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis (임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구)

  • Eom, Tae-Gwan;Suh, Seung-Woo;Jeon, Gyeo-Rok;Shin, Jung-Wook;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • Statement of problem: Loosening or fracture of the abutment screw is one of the common problems related to the dental implant. Generally, in order to make the screw joint stable, the preload generated by tightening torque needs to be increased within the elastic limit of the screw. However, additional tensile forces can produce the plastic deformation of abutment screw when functional loads are superimposed on preload stresses, and they can elicit loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum tightening torque that maximizes a fatigue life and simultaneously offer a reasonable degree of protection against loosening. Purpose: The purpose of this study was to present the influence of tightening torque on the implant-abutment screw joint stability with the 3 dimensional finite element analysis. Material and methods: In this study, the finite element model of the implant system with external butt joint connection was designed and verified by comparison with additional theoretical and experimental results. Four different amount of tightening torques(10, 20, 30 and 40 Ncm) and the external loading(250 N, $30^{\circ}$) were applied to the model, and the equivalent stress distributions and the gap distances were calculated according to each tightening torque and the result was analyzed. Results: Within the limitation of this study, the following results were drawn; 1) There was the proportional relation between the tightening torque and the preload. 2) In case of applying only the tightening torque, the maximum stress was found at the screw neck. 3) The maximum stress was also shown at the screw neck under the external loading condition. However in case of applying 10 Ncm tightening torque, it was found at the undersurface of the screw head. 4) The joint opening was observed under the external loading in case of applying 10 Ncm and 20 Ncm of tightening torque. 5) When the tightening torque was applied at 40 Ncm, under the external loading the maximum stress exceeded the allowable stress value of the titanium alloy. Conclusion: Implant abutment screw must have a proper tightening torque that will be able to maintain joint stability of fixture and abutment.

Finite element analysis of the effect of novel Lock Screw system preventing abutment screw loosening (지대주 나사 풀림 방지를 위한 새로운 Lock Screw 시스템의 효과에 대한 유한요소해석적 연구)

  • Im, Eun Sub;Kim, Jong Eun;Kim, Jee Hwan;Park, Young Bum
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.132-142
    • /
    • 2019
  • Purpose: The purpose of this finite element analysis study is to introduce the novel Lock screw system and analyze its mechanical property to see if it can prevent abutment screw loosening. Materials and Methods: The Lock screw is a component tightened on the inside of the implant abutment which applies compressive force to the abutment screw head. To investigate the effect, modeling was done using CAD program and it was analyzed by finite element analysis under various load conditions. First, the preload was measured according to the tightening torque of the abutment screw then it was compared with the theoretical value to verify the analytical model. The validated analytical model was then divided into those with no external load and those with 178 N, and the tightening torque of the lock screw was changed to 10, 20, 30 Ncm respectively to examine the property of stress distribution on the implant components. Results: Using Lock screw under various loading conditions did not produce equivalent stresses beyond the yield strength of the implant components. In addition, the axial load was increased at the abutment-abutment screw interface. Conclusion: The use of Lock screw does not exert excessive stress on the implant components and may increase the frictional force between the abutment-abutment screw interface, thus it is considered to prevent loosening of the abutment screw.

Effect of fluid contamination on reverse torque values in implant-abutment connections under oral conditions

  • Mostafavi, Azam Sadat;Memarian, Maryam;Seddigh, Mohammad Ali
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.1
    • /
    • pp.65-70
    • /
    • 2021
  • Purpose. Implant mechanical complications, including screw loosening, can influence dental implant success. It has been shown that torque values are affected by contamination occurred in implant-abutment (I/A) interface. This study aimed to examine the effects of blood, saliva, fluoride and chlorhexidine contamination on reverse torque values (RTVs) of abutment screws in oral conditions. Materials and Methods. 50 fixtures were mounted into the stainless-steel holders and divided into five groups (n = 10). Except control group (NC), fixture screw holes in other groups were contaminated with chlorhexidine (CG), saliva (SG), blood (BG), or fluoride (FG). Abutment screws were tightened with a digital torque meter. I/A assemblies were subjected to thermocycling and cyclic loading. The mean RTVs were recorded and data were analyzed with one-way ANOVA and Tukey test. Results. Except for specimens in SG (20.56 ± 1.33), other specimens in BG (21.11 ± 1.54), CG (22.89 ± 1.1) and FG (24.00 ± 1.12) displayed significantly higher RTVs compared to NC (19.00 ± 1.87). The highest RTVs were detected in CG and FG. Conclusion. The obtained data robustly suggest that RTVs were significantly affected by fluid contaminations. Specimens in FG and CG displayed the highest RTVs. Therefore, clinicians should have enough knowledge about probable contaminations in I/A interface in order to manage them during clinical procedure and to inform patients about using oral care products.

A STUDY ON GEOMETRIC COMPARISON OF FOUR INTERCHANGEABLE IMPLANT PROSTHETIC RETAINING SCREWS AND MEASUREMENT OF LOOSENING TORGUE (호환 가능한 임플랜트 보철용 유지 나사들의 형태 비교와 풀림 회전력의 측정에 관한 연구)

  • Cho, Su-Mi;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.3
    • /
    • pp.468-482
    • /
    • 1998
  • Since the concept of osseointegration was introduced by Branemark of Sweden, dental implants have been used for various dental prosthetic treatments. The survival rate of dental implant is likely to be closely related to the total biomechanical role of each component of implant system. The use of interchangeable component is very attractive for dental practitioners because such an approach would save treatment cost, flexibility of prosthetic treatment options as well as conveniences. Therefore, the use of interchangeable implant system has been increasing without scientific assessment of safety and efficacy of various interchangeable implant system. The purpose of this study, therefore, were to compare the geometric characteristic of four interchangeable dental implant screws and the loosening torque of these screws. Four types of dental implant screws tested in this study were Nobelpharma, 3i, Impla-med, Restore. Four screws each of the test specimens were subjected for scanning electron microscopic examinations under the same condition and a 35x magnified standard SEM picture was objected from each test specimen using JSM-5200 scanning microscope. From each of the SEM pictures, eight parameters. i.e., diameter of screw head. screw length, thread pitch, major diameter. neck diameter, neck length, crest width and root width were determined using a caliper. The measurement for each parameters were then corrected for their magnification factor. The loosening torque were also determined by using a torque gauge. All of the measurements were statistically analyzed by ANOVA test and multiple range test. Statistical significance was set in advance at the probability level of less than 0.05. All analyses were done with SPSS software for the personal computer. The conclusion obtained from this studies were summarized as the following; 1. No statistically significances were noted in the thread pitch. and crest width in the four screws, and in the case of major diameter, the Impla-med screw was significantly smaller than the other three screws (p<0.05). Therefore, four implant bolts could be physically inserted in a abutment nuts. 2. The diameter of screw head was decreased in the order of Restore, 3i, Nobelpharma, Impla-med screws and the length of screws were decreased in the order of 3i, Restore, Nobelpharma and Impla-med. The diameter of neck was decreased in the order of Impla-med, Restore. Nobelpharma, 3i screws. The differences of each of these parameters were statistically significant (p<0.05). The width of root of screws were decreased in the order of Nobelpharma, Impla-med, Restore and 3i. The differences among Nobelpharma and Impla-med. Restore and 3i were statistically significant (p<0.05). 3. When the screws were loosening 1, 3, 4 and 5 times, the loosening torque for Impla-med and 3i screws were significantly higher than that of Nobelpharma or Restore screws (p<0.05). However, when statistically smaller than that of 3i, Restore or Nobelpharma screws(p<0.05).

  • PDF

Evaluation of Fracture Strength and Screw Loosening of a New Angled Abutment with Angulated Screw Channel (나사 접근 구멍 각도가 조절 가능한 새로운 경사형 지대주의 파절강도 및 나사 풀림력 연구)

  • Jae-Won Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.623-628
    • /
    • 2023
  • The purpose of this study was to evaluate the fracture strength and removal torque value (RTV) of a conventional angled abutment and a newly developed angled abutment (Beauty up abutment) with an angulated screw access hole. Each abutment was divided into a control group and an experimental group (n = 20, respectively). To measure the fracture strength, the abutment was connected to the internal hex implant with 30 Ncm torque, and a load was applied at 30 degree angle with cross-head speed of 1 mm/min using a universal testing machine according to the ISO 14801:2016 standard. To measure RTV, each abutment was fastened to the implant with 30 Ncm torque. Retightening was performed after 10 minutes, and initial RTV was measured with a digital torque gauge. After retightening, a load of 250 N was applied to the abutment at a 30 degree angle using a chewing simulator. After a total of 100,000 repeated loads, RTV was measured. Statistical analysis was performed using Wilcoxon signed rank test and Mann-Whitney U test (α = .05). The fracture strength of the experimental group was statistically significantly lower than that of the control group (P = .009). There was no significant difference between initial RTV and post-loading RTV between the experimental group and the control group (P = .753, P = .527, respectively), and cyclic loading did not significantly affect RTV in both groups (P = .078).

Comparison of Accuracy of Implant Torque Controllers (수종의 임플란트 토크 조절기의 정확성 비교)

  • Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.2
    • /
    • pp.157-168
    • /
    • 2008
  • Tightening of the screws in implant restorations should be accurate and precise. If applied torque is too low, screw loosening would be occurred. With too high torque, the screw fracture might take place. Various torque generating devices are developed and employed to apply a proper torque. The purpose of this investigation was to determine and compare the accuracy of the torque controllers. In this study, 4 types of torque controllers were used; electronic torque controller, torque limiting device, torque indicating device and contra angle torque driver. Digital torque gauge was employed to measure the de-torque value. Thirty cycles of tightening and loosening were done with each torque controller. All implant torque controllers have shown slight errors and deviations. The torque liming device exhibited the most accurate data. No significant difference was found among the mean de-torque values of the electronic torque controller, torque indicating device and contra angle torque driver. In the limitation of this study, it would be recommended that the implant torque controllers should be checked whether uniformed and precise torque can be generated and a measuring error should be corrected.

Analysis of Self Loosening of Aiming Bolts in Vehicle Head Lamp (자동차 헤드램프 내의 에이밍 볼트의 풀림 해석 및 실험)

  • Moon, Ji-Seung;Baek, Hong;Park, Sang-Shin;Park, Jong-Myeong
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • Self-loosening of bolts owing to external forces occurs in several machines that are clamped by bolts and nuts. This study focuses on the self-loosening of the aiming bolt of the head lamp in a vehicle. It is important to prevent the aiming bolt from self-loosening as it has a decisive effect on the angle of the head lamp. A nut clamped with a bolt, known as a retainer, is made of plastic and has a partial screw thread. In addition, a transverse load has a considerable impact on the self-loosening of a bolt. We concentrate on the self-loosening of a bolt by a transverse load. The aim of this study is to define the limits of the external force that loosen the bolt. Based on the above conditions, we derive a theoretical equation and develop a numerical analysis program that can calculate the limiting forces for self-loosening. To verify the developed program, we design a test device that can measure the self-loosening by applying sliding forces to the aiming bolt. Using this method, we can draw the following conclusions. First, the developed testing device is suitable to prove the theory for calculating the self-loosening force. Second, the equation confirms the relationship of bolt self-loosening between resistance torque and shear force. Finally, the equation obtains the minimum value of the resistance torque required to decrease the change in the angle of the head lamp, thereby improving the possibility of increasing the stability of the head lamp.