• Title/Summary/Keyword: screw

Search Result 2,457, Processing Time 0.025 seconds

Posterior C1-2 Stabilization Using Translaminar Screw Fixation of the Axis

  • Hong, Jae-Taek;Lee, Sang-Won;Son, Byung-Chul;Park, Chun-Kun
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.5
    • /
    • pp.387-390
    • /
    • 2006
  • We report a case of C1-2 instability with a bilateral high-riding transverse foramen that was treated with rod-screw fixation using a technique of translaminar rigid screw fixation of the axis. It is believed that a C1-2 fixation with bilateral C-2 translaminar screws has an important advantage over previously reported techniques of C1-2 fixation by eliminating the risk of injury to the vertebral artery during C2 screw placement.

A STUDY OF THE MULTI-ACTION FORGING DIE SET CONTROLLED BY THE SCREWS MECHANISM

  • Yang Jin-Bin;Fang Jue-Jung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.198-201
    • /
    • 2003
  • The multi-action forging process is one of developing directions of forging technologies. In this study, the multi-action die is designed and developed by the screws mechanism and the forging simulation is conducted by using plasticine to investigate the optimum conditions for the design of the screws. The results show the design variables are optimum when the diameter is 30 mm and the screw angle is $60^{\circ}$ for the upper screw rod and the outer diameter is 60 mm and the screw angle is $23.4^{\circ}$ for the lower screw tube. It makes the relative velocity between the upper punch and the die to be two to one, which is the expected condition. The material flow of the plasticine forgings is uniform. Therefore, it is feasible to use the screw set as the multi-action mechanism for controlling the movement of the multi-action forging die set.

  • PDF

Numerical Study on the Behavior Characteristics of a Screw in Injection Molding Machine (사출기 스크류의 변형거동 특성에 관한 수치해석 연구)

  • 김청균;조승현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.30-37
    • /
    • 2002
  • Single flighted screw injection technology is the most cost effective method for the production of film, sheet, pipe and the fundamental step in other processes including blow molding and injection molding. The temperature of polymer melts and injection pressure play a very important role in the injection molding machine. Thermal distortion and displacement of a screw by temperature difference and injection pressure difference ratio cause a friction and thermoelastic wear by metal-to-metal contact between the screw and the cylinder. In this paper we analyzed thermal distortions of a screw as functions of temperature distribution and pressure profiles by finite element analysis.

Development of a CAM System for 3-Axis NC Machining for Screws (3축선반에서의 스크류 가공을 위한 CAM 시스템 개발)

  • 이원규;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.21-27
    • /
    • 1998
  • NC machining of large screw which is usually used as a part in an extruder for injection molding is done on 3-axis turning machine, and it is very time-consuming process. Not only in machining but in preparing part program for a NC machine, it requires very long time because the shape of the screw is not easy to model when using an existing general CAD/CAM software even though it is workstation level software. In addition, tool path generation procedure for NC turning for screw shape is also very tedious one because large amount of data for cutter location point must be produced and there is no specific CAM software for the machining. In this paper. development of a CAM system for screw machining which saves the role of CAD software by use of menu driven data input system for various screw shapes is introduced.

  • PDF

Stress and Vibration Analysis with respect to the change of the Shape of Screw Blade and the Hole for Centrifuge (원심분리기용 스크류의 블레이드 및 원공형상변화에 따른 응력 및 진동해석)

  • 한근조;이성욱;심재준;한동섭;안찬우;서용권;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.118-125
    • /
    • 2003
  • In this study, we carried out the finite element analysis for the screw of centrifuge that is the weakest part of the centrifuge for sewage management. Centrifugal force caused by rotation with velocity of 4000rpm was applied at the screw. Structural analysis was done with respect to the change of the ratio of blade pitch($R_P$), shaft diameter($R_D$) and extended hole($R_E$). When the area of circular hole is equal to that of extended holes, maximum equivalent stresses in the screw with circular and extended circular hole were compared. And then natural frequency analysis was executed for the same model. Three mode shapes were used to explain the vibration characteristics of each screw. Convergence study was accomplished fur more accurate results.

A Study on Structure of Support Ball Screw and Arrangement of Combined Bearing (볼나사 지지 구조와 베어링 조합 배열에 관한 연구)

  • 홍성오;정성택;조규재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.51-56
    • /
    • 2002
  • In order to achieve high precision machine tools, Performance enhancement of feed drive systems is required. One of the important technical issues is how to decrease thermal expansion of ball screw in proportion to the increase of machining speed. When measuring force of stretch of ball screw, since not only actual expansion and the value of bending have to be considered, it is impossible to define the exact value of expansion. In addition, support bearings of ball screw gain considerable force in axial direction. It also generates thermal expansion on the ball screw, and deteriorates the performances of the hearings. In conclusion, it is impossible to give the pretension enough to absorb all the elongation due to thermal expansion generated during machine is running. If given bed column and saddle are all bent to chance machine accuracy, and the support bearings of ball screw is damaged.

Parametric study on the development of pedicular screw suitable for Korean (국산 척추경 나사못 설계를 위한 parametric study)

  • Song, J.I.;Bae, S.I.;Choi, Y.C.;Ahn, M.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.167-168
    • /
    • 1998
  • The purpose of this study is to verify the biomechanical characteristics of the custom-made(our) pedicle screws which are designed the different types of shape, pitch, and profile. The results of experiments for our pedicle screw were summarized. 1) The screw of larger outer diameter showed greater holding strength. 2) The holding strength of cylindrical shaped screw was superior to that of conical shaped screw. 3) The holding strength of buttress shape of thread profile showed superior to that of V-shape. 4) The pull out and holding strength of our pedicle screws was superior to that of commercialized screw (Diapason and CD) which is widely used.

  • PDF

Thermal Expansion Analysis of the Ball Screw System by Finite Difference Methods (유한차분법을 이용한 볼스크류 시스템의 열팽창 해석)

  • Jeong, Seong-Jong;Park, Jeong-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.44-57
    • /
    • 1992
  • Ball screw systems have been used for positioning elements of machine tools and precision tables. In order to maintain the high rigidity and accuracy, a certain amount of preload is applied between the nut and the screw of ball screw systems. However, large amount of the preload oncreases the frictional heat. The temperature rises remarkably at the high speed motion, and the thermal expansion degrades the positioning accuracy. In this paper, a finite difference method is applied to analyse temperature distributions and thermal expansions of the ball screw system according to preload conditions and rotational speeds. Some simulation results show that the developed methodology is appropriate to study the thermal expansion characteristics of ball screw systems.

  • PDF

Practical Ultraprecision Positioning of a Ball Screw Mechanism

  • Sato, Kaiji;Maeda, Guilherme Jorge
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.44-49
    • /
    • 2008
  • This paper describes the problem of ultraprecision positioning with a ball screw mechanism in the microdynamic range, along with its solution. We compared the characteristics of two ball screw mechanisms with different table masses. The experimental results showed that the vibration resulting from the low stiffness of the ball screw degraded the positioning performance in the microdynamic range for the heavyweight mechanism. The proposed nominal characteristic trajectory following (NCTF) controller was designed for ultra precision positioning of the ball screw mechanism. The basic NCTF control system achieved ultra precision positioning performance with the lightweight mechanism, but not with the heavyweight mechanism. A conditional notch filter was added to the NCTF controller to overcome this problem. Despite the differences in payload and friction, both mechanisms then showed similar positioning performance, demonstrating the high robustness and effectiveness of the improved NCTF controller with the conditional notch filter. The experimental results demonstrated that the improved NCTF control system with the conditional notch filter achieved ultra precision positioning with a positioning accuracy of better than 10 nm, independent of the reference step input height.

Determination of optimum blank diameter for the high precision of Spindle Screw (전조시 Spindle Screw의 정밀도 향상을 위한 최적 소재경 선정)

  • 김광호;김동환;김병민
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.133-137
    • /
    • 2002
  • This paper summarizes the results of a numerical study conducted to analyze the determination of optimum blank diameter on material flow and thread profile for Spindle Screw in external thread rolling. Initial blank diameter affect a quality of Spindle Screw in thread rolling process. Therefore, it is very important to determine the optimum blank diameter in thread rolling process. In order to determine the optimum blank diameter, this paper suggest the calculating method of initial blank diameter considering real shape of tooth. The finite element code DEFORM is applied to analyze the metal flow of tooth. then the analytical results are verified by experiment of thread rolling for Spindle Screw.

  • PDF