• Title/Summary/Keyword: screen-printed thick film

Search Result 44, Processing Time 0.023 seconds

Characterization of VO2 thick-film critical temperature sensors by heat treatment conditions (열처리조건에 따른 VO2 후막 급변온도센서의 특성연구)

  • Song, K.H.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.407-412
    • /
    • 2007
  • For $VO_{2}$ sensors applicable to temperature measurement by using the nature of semiconductor to metal transition, the crystallinity, microstructure, and temperature vs. resistance characteristics were investigated systematically as a function of the annealing condition. The starting materials, vanadium pentoxide ($V_{2}O_{5}$) powders, were mixed with vehicle to form paste. This paste was screen-printed on $Al_{2}O_{3}$ substrates and then $VO_{2}$ thick films were heat-treated at $450^{\circ}C$ to $600^{\circ}C$, respectively, for 1 hr in $N_{2}$ gas atmosphere for the reduction. As results of the temperature vs. resistance property measurements, the electrical resistance of the $V_{2}O_{5}$ sensor in phase transition range was decreased by $10^{3.9}$ order. The presented critical temperature sensor could be used in fire-protection and control systems.

Screen Printed ZnBO Doped BST Thick Film Planner Capacitors (스크린 프린팅 기법으로 제작된 ZnBO가 첨가 (Ba,Sr)$TiO_3$ 후막의 planner capacitor 특성분석)

  • Moon, Sang-Ho;Koh, Jung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.73-76
    • /
    • 2009
  • ZnBo이 첨가된 (Ba,Sr)$TiO_3$ 후막을 이용한 planner capacitor의 전기적 특성을 조사하였다. 후막은 알루미나 기판에 스크린 프린팅기법에 의해서 제작되었고 $1200^{\circ}C$의 온도에서 소결하였다. 출발 물질인 BST의 저온 소결을 위해서 ZnBO를 첨가하였다. ZnBO가 1, 3, 5 wt% 첨가된 경우 소결온도가 $1200^{\circ}C$의 낮은 온도에서 소결되는 것을 확인했으며 ZnBO의 첨가랑이 증가함에 따라서 유전율은 감소하고 유전손실는 증가 하는 현상이 나타났다. 1, 3, 5 wt%의 ZnBO가 첨가된 (Ba,Sr)$TiO_3$는 각각 756, 624, 554의 유전율를 보였다. 또한 ZnBO의 양이 증가함에 따라서 누설전류가 감소되는 것을 확인하였고, ZnBO의 첨가가 grain의 성장과 density가 증가되어 누설전류의 양이 감소하게 되는 것으로 분석되었다.

  • PDF

Photolithographic Properties of Photosensitive Ag Paste for Low Temperature Cofiring (저온동시소성용 감광성 은(Ag)페이스트의 광식각 특성)

  • Park, Seong-Dae;Kang, Na-Min;Lim, Jin-Kyu;Kim, Dong-Kook;Kang, Nam-Kee;Park, Jong-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.313-322
    • /
    • 2004
  • Thick film photolithography is a new technology in that the lithography process such as exposure and development is applied to the conventional thick film process including screen-printing. In this research, low-temperature cofireable silver paste, which enabled the formation of thick film fine-line using photolithographic technology, was developed. The optimum composition for fine-line forming was studied by adjusting the amounts of silver powder, polymer and monomer, and the additional amount of photoinitiator, and then the effect of processing parameter such as exposing dose on the formation of fine-line was also tested. As the result, it was found that the ratio of polymer to monomer, silver powder loading, and the amount of photoinitiator were the main factors affecting the resolution of fine-line. The developed photosensitive silver paste was printed on low-temperature cofireable green sheet, then dried, exposed, developed in aqueous process, laminated, and fired. Results showed that the thick film fine-line under 20$\mu\textrm{m}$ width could be obtained after cofiring.

NiO(Co0.25Mn0.75)2O3 and BaSrTiO3 thick films on alumina substrate as temperature and humidity ceramic multisensors

  • Oh, Young-Jei;Lee, Deuk-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • $NiO{\cdot}(Co_{0.25}Mn_{0.75})_2O_3$(Mn-Ni-Co) and $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thick films were screen printed on Pt patterned alumina substrate to investigate the effects of sintering temperature on humidity and temperature sensing properties of ceramic sensors. A raise in sintering temperature increased resistance and B constant of the Mn-Ni-Co temperature sensor. This may have derived from the synergic effects of the reduction in charge carriers caused by the substitution of Co for Mn as well as the formation of microcracks from the difference in thermal expansion coefficients. Dependence of resistance on humidity of the Mn-Ni-Co temperature sensor, however, was not found. BST films sintered at temperatures in the range of $1100^{\circ}C$ to $1150^{\circ}C$ showed excellent humidity sensing properties. The BST humidity sensor was faster in its response than the Mn-Ni-Co temperature sensor. The humidity sensor, however, proved to be unstable under various temperatures, suggesting a need for a temperature stabilizing device. In contrast, the Mn-Ni-Co temperature sensor was stable under humid conditions.

Characteristics of PZT/BT Multilayered thick film using Sol-gel Process (PZT/BT 이종 세라믹의 특성)

  • Lee, Sang-Heon;Lee, Young-Hie;Lee, Sung-Gap
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.365-366
    • /
    • 2005
  • PZT films are the most intensively investigated because PZT has advantages such as low processing temperature and large remnant values. In this paper, the microstructure and electric properties of $Pb(Zr_x,Ti_{(1-x)})O_3/BaTiO_3$ heterolayered thick films with Zr mole ranging from 30 to 70 % screen printed onto a alumina substrate were studied. $Pb(Zr_x,Ti_{(1-x)})O_3$ and $BaTiO_3$ powders were prepared by the sol-gel method. The $BaTiO_3$ powders were calcined at $700^{\circ}C$ for 2 hours. Structural properties of $Pb(Zr_x,Ti_{(1-x)})O_3/BaTiO_3$ multilayered thick films were investigated. As a result of the X-ray diffraction (XRD) analysis, $Pb(Zr_x,Ti_{(1-x)})O_3/BaTiO_3$ exhibited a perovskite polycrystalline phase without pyrochlore phase or any preferred orientation.

  • PDF

Temperature vs. Resistance Characteristics by Dopants of VO2 Thick-Film Critical Temperature Sensors (불순물 첨가에 따른 VO2 후막 급변온도센서의 온도-저항 특성)

  • Choi, Jung Bum;Kang, Chong Yun;Yoon, Seok-Jin;Yoo, Kwang Soo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.337-341
    • /
    • 2014
  • For various additives doped-$VO_2$ critical temperature sensors using the nature of semiconductor to metal transition, the crystallinity, microstructure, and temperature vs. resistance characteristics were systematically investigated. As a starting material of $VO_2$ sensor, vanadium pentoxide ($V_2O_5$) powders were used, and CaO, SrO, $Bi_2O_3$, $TiO_2$, and PbO dopants were used, respectively. The $V_2O_5$ powders with dopants were mixed with a vehicle to form paste. This paste was silk screen-printed on $Al_2O_3$ substrates and then $V_2O_5$-based thick films were heat-treated at $500^{\circ}C$ for 2 hours in $N_2$ gas atmosphere for the reduction to $VO_2$. From X-ray diffraction analysis, $VO_2$ phases for pure $VO_2$, and CaO and SrO-doped $VO_2$ thick films were confirmed and their grain sizes were 0.57 to $0.59{\mu}m$. The on/off resistance ratio of the $VO_2$ sensor in phase transition temperature range was $5.3{\times}10^3$ and that of the 0.5 wt.% CaO-doped $VO_2$ sensor was $5.46{\times}10^3$. The presented critical temperature sensors could be commercialized for fire-protection and control systems.

Electrical Properties of Solar Cells With the Reactivity of Ag pastes and Si Wafer (Ag paste와 실리콘 웨이퍼의 반응성에 따른 태양전지의 전기적 성질)

  • Kim, Dong-Sun;Hwang, Seong-Jin;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.54-54
    • /
    • 2009
  • Ag thick film has been used for electrode materials with the excellent conductivity. Ag electrode is used in screen-printed silicon solar cells as a electrode material. Compared to photolithography and buried-contact technology, screen-printing technology has the merit of fabricating low-priced cells and enormous cells in a few hours. Ag paste consists of Ag powders, vehicles and additives such as frits, metal powders (Pb, Bi, Zn). Frits accelerate the sintering of Ag powders and induce the connection between Ag electrode and Si wafer. Thermophysical properties of frits and reactions among Ag, frits and Si influence on cell performance. In this study, Ag pastes were fabricated with adding different kinds of frits. After Ag pastes were printed on silicon wafer by screen-printing technology, the cells were fired using a belt furnace. The cell parameters were measured by light I-V to determine the short-circuit current, open-circuit voltage, FF and cell efficiency. In order to study the relationship between the reactivity of Ag, frit, Si and the electrical properties of cells, the reaction of frits and Si wafer on was studied with thermal properties of frits. The interface structure between Ag electrode and Si wafer were also measured for understanding the reactivity of Ag, frit and Si wafer. The excessive reactivity of Ag, frit and Si wafer certainly degraded the electrical properties of cells. These preliminary studies suggest that reactions among Ag, frits and Si wafer should optimally be controlled for cell performances.

  • PDF

A Study on Reliability of Solder Joint in Different Electronic Materials (이종 전자재료 JO1NT 부위의 신뢰성에 관한 연구)

  • 신영의;김경섭;김형호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.49-54
    • /
    • 1993
  • This paper discusses the reliability of solder joints of electronic devices on printed circuit board. Solder application is usually done by screen printing method for the bonding between outer leads of devices and thick film(Ag/Pd) pattern on Hybrid IC as wel1 as Cu lands on PCB. As result of thermal stresses generated at the solder joints due to the differences of thermal expansion coefficients between packge body and PCB, Micro cracking often occurs due to thermal fatigue failure at solder joints. The initiation and the propagate of solder joint crack depends on the environmental conditions, such as storage temperature and thermal cycling. The principal mechanisms of the cracking pheno- mana are the formation of kirkendal void caused by the differences in diffusion rate of materials, ant the thermal fatigue effect due to the differences of thermal expansion coefficient between package body and PCB. Finally, This paper experimentally shows a way to supress solder joints cracks by using low-${\alpha}$ PCB and the packages with thin lead frame, and investigates the phenomena of diffusion near the bonding interfaces.

  • PDF

Contact Formation Between Ag and Si With Lead-Free Frits in Ag Pastes For Si Solar Cells (실리콘 태양전지용 Ag pastes 에서의 무연 프릿에 따른 Ag, Si간 접촉 형성)

  • Kim, Dongsun;Hwang, Seongjin;Kim, Jongwoo;Lee, Jungki;Kim, Hyungsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.2-61.2
    • /
    • 2010
  • Ag thick-film has usually been used for the front electrode of Si solar cells with the outstanding electrical properties. Ag paste consists of Ag powers, vehicles, frits and additives. Ag paste has broadly been screen-printed on the front side of Si wafer with the merits of low cost and simplicity. The optimal contact formation between Ag electrodes and Si wafer in the front electrode during a fast firing has been considered as the key factor for high efficiency. Although the content of frit in Ag pastes is less than 5wt%, it can profoundly influence the contact formation between Ag and Si under the fast firing. In this study, the effects of lead-free frits on the contacts between Ag and Si were studied with the thermal properties and compositions of various frits. Our experimental results showed that the electrical properties of cells were related to the interface structures between Ag and Si. It was found that current path of electrons from Si to Ag would be possible through the tunneling mechanism assisted by tens of nano-Ag recrystals on $n^+$ emitter as well as Ag recrystals penetrated into $n^+$ emitter layers. These preliminary studies will be helpful for designing the proper frits for the Ag pastes with considering the properties of various Si wafers.

  • PDF

Semiconductor type micro gas sensor for $H_2$ detection using a $SnO_2-Ag_2O-PtO_x$ system by screen printing technique (스크린 프린팅 기법을 이용한 $SnO_2-Ag_2O-PtO_x$계 반도체식 마이크로 수소 가스센서에 관한 연구)

  • Kim, Il-Jin;Han, Sang-Do;Lee, Hi-Deok;Wang, Jin-Suk
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2006
  • Thick film $H_2$ sensors were fabricated using $SnO_2$ loaded with $Ag_2O$ and $PtO_x$. The composition that gave the highest sensitivity for $H_2$ was in the weight% ratio of $SnO_2 : PtO_x : Ag_2O$ as 93 : 1 : 6. The nano-crystalline powders of $SnO_2$ synthesized by sol-gel method were screen printed with $Ag_2O$ and $PtO_x$ on alumina substrates. The fabricated sensors were tested against gases like $H_2$, $CH_4$, $C_3H_8$, $C_2H_5OH$ and $SO_2$. The composite material was found sensitive against $H_2$ at the working temperature $130^{\circ}C$, with minor interference of other gases. The $H_2$ gas as low as 100 ppm can be detected by the present fabricated sensors. It was found that the sensors based on $SnO_2-Ag_2O-PtO_x$ system exhibited the high performance, high selectivity and very short response time to $H_2$ at ppm level. These characteristics make the sensor to be a promising candidate for detecting low concentrations of $H_2$.