• Title/Summary/Keyword: scientific thinking types

Search Result 69, Processing Time 0.026 seconds

The Exploration of Thinking Characteristics of Elementary Science Gifted Children within Scientific Problem Solving (과학 문제 풀이 과정에서 나타난 초등 과학 영재들의 사고 특성 탐색)

  • Kim Eun-Jin
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.2
    • /
    • pp.179-190
    • /
    • 2006
  • While most previous studies have developed educational programs for science gifted children and have analyzed the differences between science gifted children and ordinary children using quantitative research methods, few have investigated the differences among the science gifted, especially in terms of the scientific thinking process. The present study was conducted to explore the thinking characteristics of the elementary science gifted according to the three scientific thinking process types during the scientific problem solving process. The study resulted in the collected of quantitative and qualitative data through tests and an interview with questions and scientific problems which required the use of one of the three scientific thinking processes. Ten elementary science gifted children served as interviewees. Two types as an opistemological basis for solving the problems are revealed on inductive thinking problems. Three types are on abductive thinking, and Three or Four types are on deductive. The results are expected to have an influence on the teaching and the evaluation of the elementary science gifted.

  • PDF

A Suggestion of Cognitive Model of Scientific Creativity (CMSC) (과학적 창의성 모델의 제안 -인지적 측면을 중심으로-)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.2
    • /
    • pp.375-386
    • /
    • 2004
  • Creative thinking alone can not lead to scientific creativity. Scientific knowledge and scientific inquiry skills are needed for scientific creativity. Focused only on cognitive aspect, I suggested a cognitive model of scientific creativity (CMSC) consisting of 3 components: thinking for scientific creativity, scientific knowledge contents, and scientific inquiry skills. Recently, many researchers have emphasized the various thinking for creativity as well as divergent thinking. Therefore, I suggested three types of creative thinking - divergent thinking, convergent thinking, and associational thinking - and discussed its rationale. Based on this model, an example of activity material for the scientific creativity was suggested. In the further research, based on CMSC, various activity types related to scientific creativity and concrete learning materials for scientific creativity will be developed.

The Characteristics of Summarized Activities using Science Notebook for Elementary School Science Gifted (초등과학영재의 과학 노트를 활용한 정리활동 특성분석)

  • Cho, Young Seok;Kang, Ho Kam
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.1
    • /
    • pp.46-57
    • /
    • 2015
  • The purpose of this study was to analyze the writing styles and features of science writing by using science notebook for elementary school science gifted. The subject of this study was 37 sixth grade elementary school science gifted in P city. The preliminary 1 hour instruction was conducted to explain the usage of science notebook. The summarized activity using science notebook was conducted for 20 minutes following 4 hour lesson. These activities were performed for 8 times. As the result of this study, in The content which is learned today (main learning content)' which is one of components of science note, the writing appears the most frequently in external expression types and features of scientific writing, followed by writing+drawing, drawing, cartoon, writing+cartoon, mind map, table. Science writing which uses inductive thinking appears the most frequently in internal expression types and features of scientific writing, followed by deductive thinking, creative thinking. Among the components of science note, 'thinking and feeling', 'question,' 'one's own thinking of question' which are the components of science note promote the reflective thinking of elementary school student gifted for science.

Analysis of Types of Students' Visual Thinking and Instructional Effects in Elementary Science Classes (초등 과학수업에서 학생들이 구성한 비주얼 씽킹의 유형 및 수업 효과)

  • Hong, Minhae;Lim, Heejun
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.1
    • /
    • pp.100-112
    • /
    • 2021
  • Based on the importance of visual representation for scientific understanding, this study applied visual thinking in elementary science classes. This study analyzed elementary students' visual thinking and investigated the instructional influences. Students' perceptions on the class applying visual thinking were also investigated. The subject were 38 fourth grade students, 18 in experimental group and 20 in control group. For the unit of 'Shadow and mirror', on-line and off-line blended classes were applied in both group because of COVID-19. The experimental group student were asked to construct their own visual thinking, while the control group students used traditional workbook. The results were as follows. First, students' visual thinking can be classified into three different types, which are 'activity recall type', 'result summary type', and 'core concept representation type' based on what they represent rather than how they represent. Second, applying visual thinking in science class showed significant effects on science academic achievement, science related attitude, and creative academic efficacy. Third, students' perceptions on applying visual thinking in science classes were very positive. Students perceived visual thinking activities were interesting and helpful for understanding science. Educational implications of applying visual thinking in elementary science classes were discussed.

Analysis of Relationships of Scientific Communication Skills, Science Process Skills, Logical Thinking Skills, and Academic Achievement Level of Elementary School Students (초등학생의 과학적 의사소통능력과 과학 탐구능력, 논리적 사고력, 학업 성취도 수준과의 관계 분석)

  • Jeon, Seongsoo;Park, Jong-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.7
    • /
    • pp.647-655
    • /
    • 2014
  • The purpose of this study is to acquire teaching insights for improving scientific literacy by analyzing the effects of scientific communication skills, science process skills, and logical thinking skills of elementary school students on academic achievement level. The participants are 64, sixth grade elementary school students. Survey materials include the results of Scientific Communication Skill Test (SCST), Test of Science Process Skills (TSPS), Group Assessment of Logical Thinking (GALT), multiple choice test & short answer test, descriptive answer test on science, and academic achievement level test on all subjects. Based on these data, the study analyzed the relationships of science process skills, logical thinking skills, and scientific communication skills, and each category's effect on academic achievement level. Furthermore, under the assumption that scientific communication skills are affected by science process skills and logical thinking skills and directly influence the academic level, the research discovered three types of correlations as a structural model. The results show that there are considerable correlations in scientific communication skills, science process skills, and logical thinking skills. Also, these three abilities have meaningful correlations with learner's writing and descriptive question level on science curriculum and overall academic achievement level; the level of correlation differ a bit by subcategory factors. In conclusion, setting the model, science process skills and logical thinking skills influence scientific communication skill, and the skill directly influences the learner's academic level. Further analysis of the results show that scientific communication skill influences the academic achievement level of all subjects the most.

Exploring the Types of Elementary Students' Scientific Creativity According to the Structural Relationship between Creative Process and Product (창의 과정과 산물의 구조적 관계에 따른 초등학생의 과학 창의성 유형 탐색)

  • Kim, Minju;Lim, Chaeseong
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.1
    • /
    • pp.33-49
    • /
    • 2022
  • This study aims to explore, using both quantitative and qualitative data analyzing the structural relationship between creative process and product, the types of elementary students' scientific creativity. For this, 105 fifth-graders responded to a scientific creativity test that assesses creative process and product, and four students who scored the highest were interviewed. In the interview, they were asked about the cognitive process they used in generating the creative product. Then, correlation analysis and structural equation modeling were used, along with the interview data, to type the students. The main findings of the study are as follows. First, the structural equation modeling of creative process and product gave satisfactory results in absolute and incremental fit indexes. Second, among the three components of creative process - knowledge, inquiry skill-observation, and creative thinking skills -, only creative thinking skills had significant effects on creative product. Third, divergent thinking skills had the strongest correlation with the creative product, followed by convergent thinking skills. Associational thinking skills did not have significant correlation. Fourth, elementary students' scientific creativity could be categorized into Creative Type, Useful Type, Original Type, and Non-creative Type, based on their creative product. The Non-creative Type could be further classified into Common Type, Repetitive Type, Non-response Type, Irrelevant Type, and Abstract Type. Fifth, most students used either knowledge or observation in their creative process, making them either Knowledge-oriented Type or Observation-oriented Type. In addition, there were DT Type, DT-CT Type, and DT-CT-AT Type among the students, based on the kinds of creative thinking skills they mainly used in the process. This study provides implications for educators and researchers in scientific creativity education.

Thinking Styles and Their Relationship with Self-regulated Learning Ability and Scientific Inquiry Ability of the Scientifically Gifted Students (과학영재들의 사고양식과 자기조절학습능력 및 과학탐구능력간의 관계 분석)

  • Lee, Ji-Ae;Park, Soo-Kyong;Kim, Young-Min
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.3
    • /
    • pp.773-796
    • /
    • 2011
  • This study examined the thinking styles of scientifically gifted students on the basis of Sternberg's theory of mental self-government, and the relationship between thinking styles and self-regulated learning ability of the students and their scientific inquiry ability by the different types of thinking styles. 110 middle school students who belonging to the university science-gifted education center participated in this study. 13 thinking styles were postulated that fall along 5 dimensions which are functions, forms, levels, scopes and leanings of the mental self-government. Scientifically gifted students responded to the Thinking Style Inventory (TSI) that standardized Korean version, Self-regulated Ability Inventory and Test of Science Inquiry Skills Inventory (TSIS). The results indicated that scientifically gifted students prefer legislative, liberal, external, hierarchical and judical thinking styles, rather than conservative style. This result also showed that subscales of thinking styles were significantly correlated with self-regulated learning ability and scientific inquiry ability. The legislative style, hierarchical style, local style and liberal style were significant predictors of self-regulation learning ability. The legislative style was significant predictor, whereas oligarchic style was negative predictor of scientific inquiry ability. The results of k-means clustering analysis and MANOVA showed that the self-regulated learning ability and scientific inquiry ability were significantly correlated with the pattern and level of thinking style.

Development of an Assessment Formula for Scientific Creativity and Its Application (과학창의성 평가 공식의 개발과 적용)

  • Lim, Chae-Seong
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.2
    • /
    • pp.242-257
    • /
    • 2014
  • Researchers have employed a diversity of definitions and measurement methods for creativity. As a result, creativity research is underrepresented in the literature and the findings of different studies often prove difficult to draw into a coherent body of understanding. With regard to assessment, there are some important problems both in creativity research and practice, such as originality bias and Big-C creativity bias in teachers' perceptions about creativity and creative thinking, and additive rather than multiplicative scoring systems of creativity assessment. Drawing upon most widely accepted conceptions of the creativity construct, I defined 'student's scientific creativity' as the ability to make a product both original and useful to the student in terms of little-c creativity, and 'scientist's scientific creativity' as the ability to come up with a product both original and useful to the science community in terms of Big-C creativity. In this study, an 'Assessment Formula for Scientific Creativity' was developed, which is consisted of the multiplication of originality and usefulness scores rather than the sum of the two scores, and then, with scores calculated from the assessment formula, the scientific explanations generated by children were categorized into four types: routine, useful, original, and creative types. The assessment formula was revealed to be both valid and reliable. The implications of the assessment formula for scientific creativity are examined. The new assessment formula may contribute to the comprehensive understanding of scientific creativity to guide future research and the appropriate interpretation of previous studies.

An Analysis of Types of Scientific Humors Made by Scientifically-gifted Elementary School Students and Their Perceptions of the Making Scientific Humor (초등 과학영재학생들이 만든 과학 유머의 유형 및 과학 유머 만들기에 대한 인식 분석)

  • Lee, Jee-yun;Kang, Hunsik
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.3
    • /
    • pp.267-284
    • /
    • 2018
  • This study analyzed the types of scientific humors made by scientifically-gifted elementary school students and their perceptions of making scientific humor. For this, 77 students from $4^{th}$ to $6^{th}$ graders of gifted science education center in Seoul National University of Education were selected. Scientific humors made by the students were analyzed according to the number and types. Their perceptions of making scientific humor were also analyzed through a questionnaire and group interviews. The analysis of the results revealed that most of scientifically-gifted students made more than 2 scientific humors, and the number of scientific humor for each students varied from 0 to 11. The most types they made were the descriptive type and the pun using pronunciation type, but they made various types without any special type to be biased. And They made more the dialogue type than the narrative type, especially the riddle type. They used scientific knowledge that preceded the knowledge of science curriculum in their grade level over two or more years. The scientific knowledge of chemistry was used more than physics, biology, earth science and combination field. The name utilization type was more than the characteristic utilization type and the principle utilization type. Scientific humors in the everyday situation were more than humors in artificial situation. The students had various positive perceptions in making scientific humor such as increase of scientific knowledge, increase of various thinking abilities, deep understanding of science concept and principle, increase of interest and motivation about science and science learning, and increase on sense of humor. They had also some negative perceptions related to difficulties in the process of making scientific humor, lack of fun, and lack of time in the class.

Analysis on Characteristic of Elementary Science-Gifted Education Winner Programs in Gifted Education Database Focusing on Scientific Creativity (과학적 창의성 관점에서 살펴본 영재교육종합 데이터베이스(GED)의 초등 과학영재교육 프로그램 특징 분석)

  • Yun, Jihyeon;Kang, Hunsik
    • Journal of Korean Elementary Science Education
    • /
    • v.40 no.2
    • /
    • pp.145-161
    • /
    • 2021
  • This study analyzes the characteristic of elementary science-gifted education winner programs in Gifted Education Database (GED) focusing on scientific creativity. For this purpose, an analysis framework to analyze the programs was developed and a total of 840 inquiry activities from 55 winner programs were analyzed according to the analysis framework. The analysis of the results reveal that 'scientific inquiry skill' of the five scientific creativity components was most frequently included in the activities. 'Scientific knowledge content' and 'creative thinking' were also frequently included. However, 'problem solving ability' and 'common factor' were a little included. In the aspects of integration, the integrations between two or three components with five or eight types were frequently found. No integrations were also frequently included although less than the previous categories. The integrations among four with four types or five components were also slightly found. 'Scientific knowledge content', 'scientific inquiry skills', and 'creative thinking' with other components were more frequently found. However, the integrations of 'common factor' or 'problem solving ability' with the other components were less frequently found. Educational implications of these findings are discussed.