• Title/Summary/Keyword: scientific models

Search Result 467, Processing Time 0.026 seconds

Teaching Models for Scientific Inquiry Activity through the Nature of Science (NOS)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.7
    • /
    • pp.759-767
    • /
    • 2008
  • This article arose from the previous studies, which suggested a synthetic list for the nature of science (NOS), discussed the relationship between the NOS and scientific inquiry and the development of the NOS in the context of scientific inquiry. In this article, for teaching scientific inquiry through the NOS, I proposed three teaching models - reflection, interaction, and the direct model -. Within these teaching models, understanding the NOS is viewed as a prerequisite condition for the improved performance of scientific inquiry. In the reflection model, the NOS is embedded and reflected in scientific inquiry without explicit introduction or direct explanation of the NOS. In the interaction model, concrete interaction between scientific inquiry and the NOS is encouraged during the process of scientific inquiry. In the direct model, subsequent to directly comprehending the NOS at the first stage of activity, students conduct scientific inquiry based on their understanding of the NOS. The intention of this present article is to facilitate the use of these models to develop teaching materials for more authentic scientific inquiry.

Pre-service Elementary Teachers' Inquiry on a Model of Magnetism and Changes in Their Views of Scientific Models (초등 예비교사의 자기 모델 탐구 과정과 과학적 모델에 대한 이해 변화)

  • Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.3
    • /
    • pp.353-366
    • /
    • 2011
  • An alternative vision for science inquiry that appears to be important and challenging is model-based inquiry in which students generate, evaluate and revise their explanatory model. Pre-service teachers should be given opportunities to develop and use their mechanistic explanatory models in order to participate in the practice of science and to have a sound understanding of science. With this view, this study described a case of pre-service elementary teachers' scientific modeling in magnetism. The aims of this study were to explore difficulties preservice elementary teachers encountered while they engaged in a model-based inquiry, and to examine how their understandings of the nature of scientific models changed after the model-based inquiry. The data analysis revealed that the pre-service teachers had difficulties in drawing and writing their own thinking because they had little experience of expressing their own science ideas. When asked to predict what would happen, they could not understand what it meant to make a prediction "based on their model". They did not know how to use or consider their model in making a prediction. At the end of the model-based inquiry they reached a final consensus of a best model. However, they were very anxious about whether the model was the "correct" answer. With respect to the nature of scientific models, almost all of the pre-service teachers initially viewed models only as a communication tool among scientists or students and teachers to help understand others' ideas. After the model-based inquiry, however, many of them understood that they could create, test, and revise their "own" models "by themselves". They also realized the key aspects of scientific models that a model can be changed as evidence is accumulated and a model is a knowledge production tool as well as a communication tool. The results indicated that pre-service elementary teachers' understandings of the nature of scientific models and their previous school science experiences could affect their performance on a model-based inquiry, and their experience of scientific modeling could help them enhance their understandings of the nature of scientific models.

The Development of Scientific Concepts on the Day-Night Cycle of Young Children (낮과 밤의 순환에 대한 유아의 과학적 개념 발달 연구)

  • Kim, Eun-Jung;Shin, Eun-Soo
    • Korean Journal of Child Studies
    • /
    • v.33 no.3
    • /
    • pp.131-148
    • /
    • 2012
  • This study examines the scientific concept development of young children in terms of the day-night cycle. The subjects consisted of 180 three-, four-, and five-year-old children from two kindergartens and one children's center located in Seoul and Jeju. Individual interviews were conducted to collect verbal and pictorial responses on the day-night cycle. The scientific concepts on the day-night cycle are classified five stages including : no recognition, egocentric concept, initial mental models, synthetic mental models, and scientific mental models. Using two-way ANOVA, scores for the types of concept on the day-night cycles were then analyzed according to both the ages and genders of the children. The results reveal the existence of significant differences in terms of the types of concept of young children according to age. Most three-year-olds children had no recognition. Most three, four, and five-year-old children revealed egocentric concepts. Four-year-old children revealed that were in the initial stages of experiencing the mental models and synthetic mental models of the day-night cycle. Five-year-old children revealed that they were in the early stages of experiencing the initial, synthetic, scientific mental models of the day-night cycle. The results suggest appropriate ways of science education for young children based on the development of scientific concepts of the day-night cycle.

A Study of New Models for Scientific Inquiry Activity through Understanding the Nature of Science (NOS): - A Proposal for a Synthetic View of the NOS -

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.2
    • /
    • pp.153-167
    • /
    • 2007
  • In this study, it is assumed that understanding the nature of science (NOS) would enhance students' performance of scientific inquiry in more authentic ways. The ultimate goal of this study is to suggest new models for developing scientific inquiry activities through understanding the NOS by linking the NOS with scientific inquiry. First, the various definitions and statements of the NOS are summarized, then the features of the developmental nature of scientific knowledge and the nature of scientific thinking based on the philosophy of science are reviewed, and finally a synthetic list of the elements of the NOS is proposed, consisting of three categories: the nature of scientific knowledge, the nature of scientific inquiry, and the nature of scientific thinking. This suggested synthetic list of the NOS is used to suggest a model of scientific inquiry through the understanding of the NOS. This list was designed to provide basic standards regarding the NOS as well as practical guidance for designing activities to improve students' understanding of the NOS.

A Study on the Quantitative Analysis of Scientific Communication (학술 커뮤니케이션의 수량학적 분석에 관한 연구)

  • Kim Hyun-hee
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.14
    • /
    • pp.93-130
    • /
    • 1987
  • Scientific communication is an information exchange activity between scientists. Scientific communication is carried out in a variety of informal and formal ways. Basically, informal communication takes place by word of mouth, whereas formal communication occurs via the written word. Science is a highly interdependent activity in which each scientist builds upon the work of colleagues past and present. Consequently, science depends heavily on scientific communication. In this study, three mathematical models, namly Brillouin measure, logistic equation, and Markov chain are examined. These models provide one with a means of describing and predicting the behavior of scientific communication process. These mathematical models can be applied to construct quality filtering algorithms for subject literature which identify synthesized elements (authors, papers, and journals). Each suggests a different type of application. Quality filtering for authors can be useful to funding agencies in terms of identifying individuals doing the best work in a given area or subarea. Quality filtering with respect to papers can be useful in constructing information retrieval and dissemination systems for the community of scientists interested m the field. The quality filtering of journals can be a basis for the establishment of small quality libraries based on local interests in a variety of situations, ranging from the collection of an individual scientist or physician to research centers to developing countries. The objective of this study is to establish the theoretical framework for informetrics which is defined as the quantitative analysis of scientific communication, by investigating mathematical models of scientific communication.

  • PDF

Analysis of the Types of Scientific Models in the Life Domain of Science Textbooks (중등 과학 교과서의 생명 영역에 제시된 과학적 모형들의 유형 분석)

  • Kim, Mi-Young;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.4
    • /
    • pp.423-436
    • /
    • 2009
  • This study aims to develop an analytic framework that can be used to classify scientific models in science textbooks according to modes and attributes of representation and to investigate types of scientific models presented in the biology section of science textbooks for the $7^{th}$ to $10^{th}$ grades. The results showed that modes of representation of scientific models are related to the nature of sub-areas of biology sections. Generally, the iconic model and symbolic model were in dominant use, including drawings of organs and explanations of working of systems. However, the chapters on 'The Organization of Life' and 'The Continuity of Life' showed a relatively high frequency in use of the actual model. The theoretical model was presented in a part of 'The Continuity of Life', due to its highly abstract characteristics. Moreover, the gestural model and analogical model showed very low frequency. From the perspective of attributes of representation, frequency of the static model was very high, while one of the dynamic models was very low. Therefore, efforts to recognize the properties of scientific concepts more clearly and to develop diverse types of models that can represent the concepts adequately are required. Analysis of these types of scientific models can offer recognition of the usefulness and limitations of models in representing the concepts or phenomena, and can help us to design adequate models depicting particular properties of given concepts. Also, this type of analysis may motivate researchers to strive to reveal correct methods for and limits of using the scientific models that are presented in existing science textbooks, as well as to provide useful information to organize the science textbooks according to the revised $7^{th}$ national science curriculum.

Gifted Students Understanding of Science Concepts through Activities of Modifying of Scientific Conceptual Models

  • Kim, Jung-Kuk;Jeong, Seong-Oh;Kim, Young-Min
    • Journal of Gifted/Talented Education
    • /
    • v.14 no.4
    • /
    • pp.113-123
    • /
    • 2004
  • The concern with scientific mode1s has been growing in science education, and schematic models are frequently used to teach science concepts in secondary schools. The aim of this study is to investigate how well the scientifically gifted students understand scientific concepts through activities of modifying scientific models which we developed. Thirty 8th-grade students participated in the study, 15 in a control group and 15 in an experimental group. For the students in the experimental group, teaching material with activities of modifying models, while for the students in the control group, the teaching material with traditional activities such as explanation, problem solving, and reading. The teaching contents in physics for both groups were linear momentum. We used multiple-choice test and essay-type test to evaluate students' achievements after lessons, and then compared their achievements of both groups. Through the research, we could find a clue that model-modifying activities are helpful for the gifted students to enhance their understanding of physics concepts, although the statistics does not show meaningful difference between experimental and control groups.

Review on Discrete, Appraisal, and Dimensional Models of Emotion (정서의 심리적 모델: 개별 정서 모델, 평가 모델, 차원 모델을 중심으로)

  • Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.179-186
    • /
    • 2011
  • Objective: This study is to review three representative psychological perspectives that explain scientific construct of emotion, that are the discrete emotion model, appraisal model, and dimensional model. Background: To develop emotion sensitive interface is the fusion area of emotion and scientific technology, it is necessary to have a balanced mixture of both the scientific theory of emotion and practical engineering technology. Extensional theories of the emotional structure can provide engineers with relevant knowledge in functional application of the systems. Method: To achieve this purpose, firstly, literature review on the basic emotion model and the circuit model of discrete emotion model as well as representative theories was done. Secondly, review on the classical and modern theories of the appraisal model emphasizing cognitive appraisal in emotion provoking events was conducted. Lastly, a review on dimensional theories describing emotion by dimensions and representative theories was conducted. Results: The paper compared the three models based on the prime points of the each model. In addition, this paper also made a comment on a need for a comprehensive model an alternative to each model, which is componential model by Scherer(2001) describing numerous emotional aspects. Conclusion: However, this review suggests a need for an evolved comprehensive model taking consideration of social context effect and discrete neural circuit while pinpointing the limitation of componential model. Application: Insight obtained by extensive scientific research in human emotion can be valuable in development of emotion sensitive interface and emotion recognition technology.

Fine-tuning BERT Models for Keyphrase Extraction in Scientific Articles

  • Lim, Yeonsoo;Seo, Deokjin;Jung, Yuchul
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.45-56
    • /
    • 2020
  • Despite extensive research, performance enhancement of keyphrase (KP) extraction remains a challenging problem in modern informatics. Recently, deep learning-based supervised approaches have exhibited state-of-the-art accuracies with respect to this problem, and several of the previously proposed methods utilize Bidirectional Encoder Representations from Transformers (BERT)-based language models. However, few studies have investigated the effective application of BERT-based fine-tuning techniques to the problem of KP extraction. In this paper, we consider the aforementioned problem in the context of scientific articles by investigating the fine-tuning characteristics of two distinct BERT models - BERT (i.e., base BERT model by Google) and SciBERT (i.e., a BERT model trained on scientific text). Three different datasets (WWW, KDD, and Inspec) comprising data obtained from the computer science domain are used to compare the results obtained by fine-tuning BERT and SciBERT in terms of KP extraction.

A Study for Models of Regional Science & Technology Information Infrastructure to Develop Regional Innovation System

  • Kim, Yon-Hyong;Kim, Jae-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.2
    • /
    • pp.335-348
    • /
    • 2005
  • The purpose of this research is to suggest the roles of government through constructing models of regional scientific technology and information to develop regional innovation system, which can maximize international competitiveness of Korea. To do this, this research compares the characteristics and superiorities of each regional areas in Korea. Constructing DB for scientific technology and information is recognized as a primary factor for constructing scientific technology and information infrastructure. In regional areas, constructing DB for professional scientific technology and information and networks are regarded as a key factor for regional scientific technology and information. Also, the primary problem to be solved in the regional areas is to construct DB for scientific technology and information.

  • PDF