DOI QR코드

DOI QR Code

Analysis of the Types of Scientific Models in the Life Domain of Science Textbooks

중등 과학 교과서의 생명 영역에 제시된 과학적 모형들의 유형 분석

  • Published : 2009.06.30

Abstract

This study aims to develop an analytic framework that can be used to classify scientific models in science textbooks according to modes and attributes of representation and to investigate types of scientific models presented in the biology section of science textbooks for the $7^{th}$ to $10^{th}$ grades. The results showed that modes of representation of scientific models are related to the nature of sub-areas of biology sections. Generally, the iconic model and symbolic model were in dominant use, including drawings of organs and explanations of working of systems. However, the chapters on 'The Organization of Life' and 'The Continuity of Life' showed a relatively high frequency in use of the actual model. The theoretical model was presented in a part of 'The Continuity of Life', due to its highly abstract characteristics. Moreover, the gestural model and analogical model showed very low frequency. From the perspective of attributes of representation, frequency of the static model was very high, while one of the dynamic models was very low. Therefore, efforts to recognize the properties of scientific concepts more clearly and to develop diverse types of models that can represent the concepts adequately are required. Analysis of these types of scientific models can offer recognition of the usefulness and limitations of models in representing the concepts or phenomena, and can help us to design adequate models depicting particular properties of given concepts. Also, this type of analysis may motivate researchers to strive to reveal correct methods for and limits of using the scientific models that are presented in existing science textbooks, as well as to provide useful information to organize the science textbooks according to the revised $7^{th}$ national science curriculum.

이 연구에서는 중등 과학 교과서의 과학적 모형들에 대해 그 표상 양식과 속성에 따라 분류하는 분석틀을 개발하여, 7${\sim}$10학년 과학 교과서 생명 영역에 제시된 과학적 모형들의 유형을 분석하였다. 그 결과, 모형의 표상 양식은 생명 영역의 주제별로 특성을 나타냈다. 전체적으로는 기관의 형태를 표상한 그림이나 시스템의 작동에 대한 설명과 같은 모상 모형과 상징적 모형의 비율이 고르게 높았다. 그러나 '생물의 구성'과 '생명의 연속성' 에서는 실제적 모형이 상대적으로 높게 나타났다. 또한 이론적 모형은 개념의 특성상 추상성이 높기 때문에 '생명의 연속성' 주제에서 일부 제시되었다. 몸짓 모형이나 비유적 모형은 매우 낮은 비율을 보였다. 표상의 속성 차원에서는 모든 주제에서 정적 모형의 비율이 매우 높았고, 동적 모형의 비율은 매우 낮았다. 따라서 과학 개념들의 특성을 좀 더 명확히 파악하고, 그 개념을 정확히 표상할 수 있는 다양한 유형의 모형들을 개발하려는 노력이 요구된다. 과학적 모형들에 대한 유형 분석은 개념이나 현상을 표상하는 모형의 유용성과 한계를 파악할 수 있고, 특정 개념을 표상하는데 적합한 모형을 고안하는데 도웅을 줄 수 있다. 또한 이런 유형의 분석은 현 교과서들에 나타난 과학적 모형 사용의 제한점과 바람직한 방향을 모색하게 할 뿐 아니라, 7차 개정 교육과정에 따른 과학 교과서를 구성하는데 유용한 정보를 제공해 줄 것이다.

Keywords

References

  1. 김미영, 김희백 (2007). 모형 기반 수업을 통한 혈액 순환 개념 변화의 다차원적 분석. 한국생물교육학회지, 35(3), 407-424
  2. 김희백, 김성하, 이선경, 김형련 (2001). 호르몬작용 이해를 위한 동적 비유 모형 수업의 효과. 한국생물교육학회지, 29(1), 57-64
  3. 오필석 (2006). 지구과학교육에서 활용되는 과학적 모델의 분류틀 개발. 한국지구과학회 2006년도 춘계학술발표회 논문집, 92
  4. Bailey, K. D. (1994). Typologies andtaxonomies: An introduction to classificationtechniques. Thousand Oaks, California: SagePublications
  5. Boulter, C. J., & Buckley, B. C. (2000).Constructing a typology of models for scienceeducation. In J. K. Gilbert & C. J. Boulter(Eds.), Developing models in science education(pp. 41-58). Dordrecht, The Netherlands:Kluwer Academic Publishers
  6. Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal of Science Education, 22(9), 895-935 https://doi.org/10.1080/095006900416848
  7. Chi, M. T. H., Slotta, J. D., & de Leeuw, N.(1994). From things to processes: A theory ofconceptual change for learning scienceconcepts. Learning and Instruction, 4(1), 27-43 https://doi.org/10.1016/0959-4752(94)90017-5
  8. Chiu, M. H., & Lin, J. W. (2005). Promoting fourth graders' conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42(4), 429-464 https://doi.org/10.1002/tea.20062
  9. Clement, J. (2000). Model based learning asa key research area for science education.International Journal of Science Education,22(9), 1041-1053 https://doi.org/10.1080/095006900416901
  10. Coll, R. K., France, B., & Taylor, I. (2005).The role of models and analogies in scienceeducation: Implications from research.International Journal of Science Education,27(2), 183-198 https://doi.org/10.1080/0950069042000276712
  11. Dagher, Z. R. (1994). Does the use ofanalogies contribute to conceptual change?Science Education, 78(6), 601-614 https://doi.org/10.1002/sce.3730780605
  12. Duit, R. (1999). Conceptual changeapproaches in science education. In W.Schnotz, S. Vosniadou, & M. Carretero (Eds.),New perspectives on conceptual change (pp.155-169). London: Routledge Falmer
  13. Ferrari, M., & Chi, M. T. H. (1998). The nature of naive explanations of natural selection. Science Education, 20(10), 1231-1256 https://doi.org/10.1080/0950069980201005
  14. Gilbert, J. K. (2004). Models and modeling:Routes to more authentic science education.International Journal of Science andMathematics Education, 2(2), 115-130 https://doi.org/10.1007/s10763-004-3186-4
  15. Gobert, J. D. (2000). A typology of causalmodels for plate tectonics: Inferential powerand barriers to understanding. InternationalJournal of Science Education, 22(9), 937-977 https://doi.org/10.1080/095006900416857
  16. Grosslight L., Unger, C., Jay, E., & Smith,C. (1991). Understanding models and their use in science: Conceptions of middle and highschool students and experts. Journal of Research in Science Teaching, 28(9), 799-822 https://doi.org/10.1002/tea.3660280907
  17. Harrison, A. G., & Treagust, D. F. (1996).Secondary students' mental models of atomsand molecules: Implications for teachingchemistry. Science Education, 80(5), 509-534 https://doi.org/10.1002/(SICI)1098-237X(199609)80:5<509::AID-SCE2>3.0.CO;2-F
  18. Harrison, A. G., & Treagust, D. F. (2000). Atypology of school models. InternationalJournal of Science Education, 22(9), 937-977 https://doi.org/10.1080/095006900416857
  19. Johnson-Laird, P. N. (1983). Mentalmodels: Towards a cognitive science oflanguage, inference and consciousness.Cambridge: Cambridge University Press
  20. Johnstone, A. H. (1993). The development ofchemistry teaching. Journal of ChemicalEducation, 70, 701-705 https://doi.org/10.1021/ed070p701
  21. Lemke, J. (1998). Multiplying meaning:Visual and verbal semiotics in scientific text.In Martin, J. R. & Veel, R. (eds.), Readingscience: Critical and functional perspectives ondiscourse of science. Routledge, New York,USA, 87-113
  22. Pozzer, L. L., & Roth, W.-M. (2003).Prevalence, function, and structure ofphotographs in high school biology textbooks.Journal of Research in Science Teaching,40(10), 1089-1114 https://doi.org/10.1002/tea.10122
  23. Rappoport, L. T., & Ashkenazi, G. (2008).Connecting levels of representation: Emergentversus submergent perspective. InternationalJournal of Science Education, 30(12), 1585-1603 https://doi.org/10.1080/09500690701447405
  24. Roth, W.-M., Bowen, G. M., & McGinn, M.K. (1999). Differences in graph-relatedpractices between high school biologytextbooks and scientific ecology journals.Journal of Research in Science Teaching, 36,977-1019 https://doi.org/10.1002/(SICI)1098-2736(199911)36:9<977::AID-TEA3>3.0.CO;2-V
  25. Venville, G. J., & Treagust, D. F. (1996).The role of analogies in promoting conceptualchange in biology. Instructional Science, 24(4),295-320 https://doi.org/10.1007/BF00118053
  26. Venville, G. J., & Treagust, D. F. (1998).Exploring conceptual change in genetics usinga multidimensional interpretive framework.Journal of Research in Science Teaching, 35(9),1031-1055 https://doi.org/10.1002/(SICI)1098-2736(199811)35:9<1031::AID-TEA5>3.0.CO;2-E