• Title/Summary/Keyword: scientific model and modeling

Search Result 142, Processing Time 0.026 seconds

Elementary Student's Reasoning Patterns Represented in Constructing Models of 'Food Web and Food Pyramid' ('먹이 그물과 먹이 피라미드' 모형 구성에서 나타난 초등학생의 추론 유형)

  • Han, Moon-Hyun;Kim, Heui-Baik
    • Journal of Korean Elementary Science Education
    • /
    • v.31 no.1
    • /
    • pp.71-83
    • /
    • 2012
  • The purpose of this study was to explore ecological concepts, epistemological reasoning and reasoning processes through constructing 'food web and food pyramid' in ecology. We conducted classes which involved a 'food web and food pyramid' for $6^{th}$ grade students. Each class is constructed of small groups to do modeling and epistemological reasoning through communication. The researcher had videotaped and recorded each class and have made transcription about classes. We analysed patterns of 'food web and food pyramid models' and reasoning processes according to scientific epistemology using transcription data and student outputs. As a result, students represented phenomenon-based reasoning, relation-based reasoning and model-based reasoning in scientific epistemology from their modeling. Students usually did relation-based reasoning and model-based reasoning in food web which explains ecological phenonenon, while they usually did model-based reasoning in food pyramid which expects ecological phenomenon. Student's reasoning can be limited when they have misconception of scientific knowledge and are limited by fragmentary knowledge. This represents that students has to do relation-based reasoning and model-based reasoning is beneficial in their ecological model. It also suggests that students need to define correct-conception related to ecological modeling(food web, food pyramid).

Role of Scientific Reasoning in Elementary School Students' Construction of Food Pyramid Prediction Models (초등학생들의 먹이 피라미드 예측 모형 구성에서 과학적 추론의 역할)

  • Han, Moonhyun
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.3
    • /
    • pp.375-386
    • /
    • 2019
  • This study explores how elementary school students construct food pyramid prediction models using scientific reasoning. Thirty small groups of sixth-grade students in the Kyoungki province (n=138) participated in this study; each small group constructed a food pyramid prediction model based on scientific reasoning, utilizing prior knowledge on topics such as biotic and abiotic factors, food chains, food webs, and food pyramid concepts. To understand the scientific reasoning applied by the students during the modeling process, three forms of qualitative data were collected and analyzed: each small group's discourse, their representation, and the researcher's field notes. Based on this data, the researcher categorized the students' model patterns into three categories and identified how the students used scientific reasoning in their model patterns. The study found that the model patterns consisted of the population number variation model, the biological and abiotic factors change model, and the equilibrium model. In the population number variation model, students used phenomenon-based reasoning and relation-based reasoning to predict variations in the number of producers and consumers. In the biotic and abiotic factors change model, students used relation-based reasoning to predict the effects on producers and consumers as well as on decomposers and abiotic factors. In the equilibrium model, students predicted that "the food pyramid would reach equilibrium," using relation-based reasoning and model-based reasoning. This study demonstrates that elementary school students can systematically elaborate on complicated ecology concepts using scientific reasoning and modeling processes.

Understanding of Group Modeling Process with Geological Field Trip applied on Social-Construction of Scientific Model: Focusing on Constraints (과학적 모델의 사회적 구성 수업을 적용한 야외지질학습에서 나타나는 조별 모델 구성과정 이해: 제약조건을 중심으로)

  • Choi, Yoon-Sung;Choi, Jong-Rim;Kim, Chan-Jong;Choe, Seung-Urn
    • Journal of the Korean earth science society
    • /
    • v.38 no.4
    • /
    • pp.303-320
    • /
    • 2017
  • Purpose of this study is understanding of group modeling process focusing on constraints with geological field trip applied on social-construction of scientific model. This study was carried out on 12 students of 3 groups who participate in the study 'S' gifted education center. Students were conducted to theme of 'How was formation of Mt. Gwanak?' on 2 field trip classes and 3 modeling classes. Semi-structured interviews, all discourse of field trip and modeling classes, records of personal and group activity were analyzed to constraints based on theoretical background proposed by Nersessian (2008). Results as follows. First, sources of constraints are scientific knowledge, contents observed by students during field trips and additional materials things to be explained by model during modeling class with geological field trip applied on social-construction of scientific model. Second, there are 3 types of constraints to affect making group modeling. It is that shared constraint which used commonly by all the group members. It called selected constraint that used during the initial modeling and later were reflected on for use in the group modeling. And it is that generated constraints, which were not in the initial modeling but were used later in the group modeling. This study suggests that not only the constraints can help to understand of making group model through how they used but also show that example of learning with geological field trip on social-construction of scientific model to contribute school science.

Pre-service Elementary Teachers' Inquiry on a Model of Magnetism and Changes in Their Views of Scientific Models (초등 예비교사의 자기 모델 탐구 과정과 과학적 모델에 대한 이해 변화)

  • Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.3
    • /
    • pp.353-366
    • /
    • 2011
  • An alternative vision for science inquiry that appears to be important and challenging is model-based inquiry in which students generate, evaluate and revise their explanatory model. Pre-service teachers should be given opportunities to develop and use their mechanistic explanatory models in order to participate in the practice of science and to have a sound understanding of science. With this view, this study described a case of pre-service elementary teachers' scientific modeling in magnetism. The aims of this study were to explore difficulties preservice elementary teachers encountered while they engaged in a model-based inquiry, and to examine how their understandings of the nature of scientific models changed after the model-based inquiry. The data analysis revealed that the pre-service teachers had difficulties in drawing and writing their own thinking because they had little experience of expressing their own science ideas. When asked to predict what would happen, they could not understand what it meant to make a prediction "based on their model". They did not know how to use or consider their model in making a prediction. At the end of the model-based inquiry they reached a final consensus of a best model. However, they were very anxious about whether the model was the "correct" answer. With respect to the nature of scientific models, almost all of the pre-service teachers initially viewed models only as a communication tool among scientists or students and teachers to help understand others' ideas. After the model-based inquiry, however, many of them understood that they could create, test, and revise their "own" models "by themselves". They also realized the key aspects of scientific models that a model can be changed as evidence is accumulated and a model is a knowledge production tool as well as a communication tool. The results indicated that pre-service elementary teachers' understandings of the nature of scientific models and their previous school science experiences could affect their performance on a model-based inquiry, and their experience of scientific modeling could help them enhance their understandings of the nature of scientific models.

The Analysis of University Student's Modeling Patterns and Perceptions Through Modeling Experiments (모델링 탐구 활동에서의 대학생의 모델링 유형 분석 및 인식)

  • Jang, Eun-Kyung;Ko, Woon;Kang, Seong-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.1
    • /
    • pp.1-14
    • /
    • 2012
  • The purpose of this study is to analyze the student's modeling patterns of modeling experiments. The 1st year students who were taking the general chemistry laboratory course performed three modeling inquiry experiments and submitted laboratory reports. Students expressed the model in a formula form and/or a written form. Student's modeling patterns could be classified by five types; 'Refining tentative modeling', 'Accepting alternative modeling', 'Discarding tentative modeling', 'Failing to find causes', 'Disbelieving results'. This modeling experiment provides for students the opportunity for understanding how a scientific model is created and what the nature of scientific modeling is.

The Impact of the Argument-based Modeling Strategy using Scientific Writing implemented in Middle School Science (중학교 과학수업에 적용한 글쓰기를 활용한 논의-기반 모델링 전략의 효과)

  • Cho, Hey Sook;Nam, Jeonghee
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.6
    • /
    • pp.583-592
    • /
    • 2014
  • The purpose of this study is to investigate the impact of argument-based modeling strategy using scientific writing on student's modeling ability. For this study, 66 students (three classes) from the 7th grade were selected and of these, 43 students (two classes) were assigned to two experimental groups while the other 23 students (one class) were assigned to comparative group. In the experimental groups, one group (22 students) was Argument-based multimodal Representation and Modeling (AbRM), and the other group (21 students) was Argument-based Modeling (AbM). Modeling ability consisted of identifying the problem, structuring of scientific concepts, adequacy of claim and evidence and index of multimodal representation. As for the modeling ability, AbRM group scored significantly higher than the other groups, AbM group was significantly higher than comparative group. The four sub-elements of modeling ability in the AbRM group was significantly higher than the other groups statistically and AbM group scored significantly higher than comparative group. From these results, the argument-based modeling strategy using scientific writing was effective on students' modeling ability. Students organized or expressed the model and evaluated or modified it through the process of argument-based modeling using scientific writing and the exchange of opinions with others by scientific language as argument and writing.

The Effects of Cogenerative Dialogues on Scientific Model Understanding and Modeling of Middle School Students (공동생성적 대화가 중학생의 과학적 모델에 관한 이해와 모델 구성에 미치는 영향)

  • Kim, Ji-Yoon;Choe, Seung-Urn;Kim, Chan-Jong
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.243-268
    • /
    • 2016
  • The purpose of this study was to explore the effects of Cogenerative Dialogues embedded in a modeling-centered science learning and instruction on 7th grade female $students{\acute{i}}$ understanding of scientific models and modelling A total of 49 7th grade female students in two classrooms participated in a series of five modeling-centered science lessons, and 17 students volunteered to participate in this study. Participating students were divided into four groups, and two groups were randomly assigned to a treatment group who were asked to participate in Cogenerative Dialogues after each lesson, while the others, a control group, who did not. For data analysis, Upmeier and $Kr{\ddot{u}ger^{\prime}s$ framework was used to explore $participants{\acute{i}}$ understanding of model, and a revised $Baek{\acute{i}}s$ framework was used to examine $participants{\acute{i}}$ modeling process. Data analysis indicated that students who participated in Cogenerative Dialogues generally showed richer understanding of scientific models, as well as modeling, than the others who did not. This study suggests that Cogenerative Dialogues can be used as an educationally meaningful method for science educators to encourage students actively participate in a whole process of science instruction and learning, which assists them to increase their understanding not only of scientific models and modeling specifically but also of the nature and processes of scientific practice in general.

The Development of Argument-based Modeling Strategy Using Scientific Writing (과학적 글쓰기를 활용한 논의-기반 모델링 전략의 개발)

  • Cho, Hey Sook;Nam, Jeonghee;Lee, Dongwon
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.5
    • /
    • pp.479-490
    • /
    • 2014
  • The purpose of this study is to develop an argument-based modeling strategy, utilizing writing and argumentation for communication in science education. We need to support students and teachers who have difficulty in modeling in science education, this strategy focuses on development of four kinds of factors as follows: First, awareness of problems, recognizing in association with problems by observing several problematic situations. Second is science concept structuralization suggesting enough science concepts by organization for scientific explanation. The third is claim-evidence appropriateness that suggests appropriate representation as evidence for assertions. Last, the use of various representations and multimodal representations that converts and integrates these representations in evidence suggestion. For the development of these four factors, this study organized three stages. 'Recognition process' for understanding of multimodal representations, and 'Interpretation process' for understanding of activity according to multimodal representations, 'Application process' for understanding of modeling through argumentation. This application process has been done with eight stages of 'Asking questions or problems - Planning experiment - Investigation through observation on experiment - Analyzing and interpreting data - Constructing pre-model - Presenting model - Expressing model using multimodal representations - Evaluating model - Revising model'. After this application process, students could have opportunity to form scientific knowledge by making their own model as scientific explanation system for the phenomenon of the natural world they observed during a series of courses of modeling.

The Characteristics of Group and Classroom Discussions in the Scientific Modeling of the Particulate Model of Matter (물질의 입자성에 대한 모형 구성 과정에서 나타나는 소집단 토론과 전체 학급 토론의 특징)

  • Yang, Chanho;Kim, SooHyun;Jo, Minjin;Noh, Taehee
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.3
    • /
    • pp.361-369
    • /
    • 2016
  • In this study, we investigated the characteristics of group discussion and classroom discussion in the scientific modeling of the particulate model of matter. 7th graders in Seoul participated in this study. We implemented science instructions based on the GEM cycle of scientific modeling. We analyzed the differences between group discussion and classroom discussion in three steps: exploring thoughts, comparing thoughts, and drawing conclusions. We also looked into the level of argumentations of the students in the modeling activities. The analysis of the results indicated that students generated a group model by extracting commonalities from each model of their group members, and then they evaluated and modified the group model by comparing the differences among the models in classroom discussion. The main step involved in group discussion was 'exploring thoughts', whereas in classroom discussion it was 'comparing thoughts'. Although the levels of argumentation among the students were generally low, most students participated with enthusiasm, as they expressed their interest and had positive perception in the modeling activities. As a result, the modeling activities were found to have positive influences on concept development. Some suggestions to implement the modeling activities in science teaching effectively were discussed.

Future Development Direction of Water Quality Modeling Technology to Support National Water Environment Management Policy (국가 물환경관리정책 지원을 위한 수질모델링 기술의 발전방향)

  • Chung, Sewoong;Kim, Sungjin;Park, Hyungseok;Seo, Dongil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.621-635
    • /
    • 2020
  • Water quality models are scientific tools that simulate and interpret the relationship between physical, chemical and biological reactions to external pollutant loads in water systems. They are actively used as a key technology in environmental water management. With recent advances in computational power, water quality modeling technology has evolved into a coupled three-dimensional modeling of hydrodynamics, water quality, and ecological inputs. However, there is uncertainty in the simulated results due to the increasing model complexity, knowledge gaps in simulating complex aquatic ecosystem, and the distrust of stakeholders due to nontransparent modeling processes. These issues have become difficult obstacles for the practical use of water quality models in the water management decision process. The objectives of this paper were to review the theoretical background, needs, and development status of water quality modeling technology. Additionally, we present the potential future directions of water quality modeling technology as a scientific tool for national environmental water management. The main development directions can be summarized as follows: quantification of parameter sensitivities and model uncertainty, acquisition and use of high frequency and high resolution data based on IoT sensor technology, conjunctive use of mechanistic models and data-driven models, and securing transparency in the water quality modeling process. These advances in the field of water quality modeling warrant joint research with modeling experts, statisticians, and ecologists, combined with active communication between policy makers and stakeholders.