DOI QR코드

DOI QR Code

The Characteristics of Group and Classroom Discussions in the Scientific Modeling of the Particulate Model of Matter

물질의 입자성에 대한 모형 구성 과정에서 나타나는 소집단 토론과 전체 학급 토론의 특징

  • Received : 2016.03.03
  • Accepted : 2016.05.04
  • Published : 2016.06.30

Abstract

In this study, we investigated the characteristics of group discussion and classroom discussion in the scientific modeling of the particulate model of matter. 7th graders in Seoul participated in this study. We implemented science instructions based on the GEM cycle of scientific modeling. We analyzed the differences between group discussion and classroom discussion in three steps: exploring thoughts, comparing thoughts, and drawing conclusions. We also looked into the level of argumentations of the students in the modeling activities. The analysis of the results indicated that students generated a group model by extracting commonalities from each model of their group members, and then they evaluated and modified the group model by comparing the differences among the models in classroom discussion. The main step involved in group discussion was 'exploring thoughts', whereas in classroom discussion it was 'comparing thoughts'. Although the levels of argumentation among the students were generally low, most students participated with enthusiasm, as they expressed their interest and had positive perception in the modeling activities. As a result, the modeling activities were found to have positive influences on concept development. Some suggestions to implement the modeling activities in science teaching effectively were discussed.

이 연구에서는 중학생들의 과학적 모형 구성 활동을 적용한 수업에서 나타나는 소집단 토론과 전체 학급 토론의 특징을 분석하였다. 서울특별시에 소재한 중학교의 1학년 학생들을 대상으로 GEM 순환 과정에 따라 구성한 과학적 모형 구성 활동을 적용한 수업을 진행하였다. 소집단 토론 및 전체 학급 토론을 생각 드러내기, 생각 비교하기, 결론 이끌어내기의 세 단계로 분류하여 단계별 특징을 분석하였으며, 그 과정에서 나타나는 논증의 수준도 분석하였다. 연구 결과, 학생들은 소집단 토론에서 구성원 각자의 개인 모형으로부터 공통점을 추출하여 소집단 모형을 생성하였고, 전체 학급 토론에서 소집단 모형들간의 차이점을 논의하면서 소집단 모형을 평가하고 수정하였다. 이에 따라 소집단 토론에서는 생각 드러내기 단계가 중심이었고 전체 학급 토론에서는 생각 비교하기 단계가 중심이었다. 소집단 토론과 전체 학급 토론에서 일어나는 논증의 수준은 전반적으로 높지 않았으나, 과학적 모형 구성 활동에 대한 학생들의 인식과 흥미가 높아 적극적으로 수업에 참여하였다. 그 결과, 과학적 모형 구성 활동이 학생들의 개념 변화에 긍정적인 영향을 미친 것으로 나타났다. 이러한 연구 결과를 바탕으로 과학적 모형 구성 활동을 적용한 수업을 효과적으로 진행하기 위한 방안에 대해 논의하였다.

Keywords

References

  1. Bottcher, F., & Meisert, A. (2010). Argumentation in science education: A model-based framework. Science & Education, 20(2), 103-140. https://doi.org/10.1007/s11191-010-9304-5
  2. Cho, H. S., & Nam, J. (2014). The impact of the argument-based modeling strategy using scientific writing implemented in middle school science. Journal of the Korean Association for Science Education, 34(6), 583-592. https://doi.org/10.14697/jkase.2014.34.6.0583
  3. Cho, H. S., Nam, J., & Lee, D. (2014). The development of argument-based modeling strategy using scientific writing. Journal of the Korean Association for Science Education, 34(5), 479-490. https://doi.org/10.14697/jkase.2014.34.5.0479
  4. Clement, J. (2008b). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordrecht: Springer.
  5. Clement, J. (2008a). Six levels of organization for curriculum design and teaching. In J. Clement, & M. A. Rea-Ramirez (Eds.), Model based learning and instruction in science (pp. 255-272). Dordrecht: Springer.
  6. Clement, J., & Nunez-Oviedo, M. C. (2008). A competition strategy and other modes for developing mental models in large group discussion. In J. Clement, & M. A. Rea-Ramirez (Eds.), Model based learning and science instruction (pp. 117-138). Dordrecht: Springer.
  7. Clement, J., & Rea-Ramirez, M. A. (2008). Model based learning and science instruction. Dordrecht: Springer.
  8. Do, S. L. (2005). Emotion and classroom talk: Toward a model of affect in students' experiences of classroom discussion. The Korean Journal of Educational Psychology, 19(1), 17-39.
  9. Furtak, E. M., Hardy, I., Beinbrech, C., Shavelson, R. J., & Shemwell, J. T. (2010). A framework for analyzing evidence-based reasoning in science classroom discourse. Educational Assessment, 15(3-4), 175-196. https://doi.org/10.1080/10627197.2010.530553
  10. Giere, R. N. (2001). A new framework for teaching scientific reasoning. Argumentation, 15(1), 21-33. https://doi.org/10.1023/A:1007880010975
  11. Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert, & C. J. Boulter (Eds.), Developing models in science education (pp. 3-17). Dordrecht: Kluwer.
  12. Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiplemodel use in grade 11 chemistry. Science Education, 84(3), 352-381. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.0.CO;2-J
  13. Jimenez-Aleixandre, M. P., & Erduran, S. (2008). Argumentation in science education: An overview. In S. Erduran, & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 3-27). Dordrecht: Springer.
  14. Justi, R. S., & Gilbert, J. K. (2002). Science teachers' knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24(12), 1273-1292. https://doi.org/10.1080/09500690210163198
  15. Kang, E., Kim, C.-J., Choe, S.-U., Yoo, J., Park, H.-J., Lee, S., & Kim, H.-B. (2012). Small group interaction and norms in the process of constructing a model for blood flow in the heart. Journal of the Korean Association for Science Education, 32(2), 372-387. https://doi.org/10.14697/jkase.2012.32.2.372
  16. Krajcik, J., & Merritt, J. (2012). Engaging students in scientific practices: What does constructing and revising models look like in the science classroom? Science Scope, 35(7), 6-8.
  17. Lee, S., Kim, C.-J., Choe, S.-U., Yoo, J., Park, H.-J., Kang, E., & Kim, H.-B. (2012). Exploring the patterns of group model development about blood flow in the heart and reasoning process by small group interaction. Journal of the Korean Association for Science Education, 32(5), 805-822. https://doi.org/10.14697/jkase.2012.32.5.805
  18. Lee, S., & Kim, H.-B. (2014). Exploring secondary students' epistemological features depending on the evaluation levels of the group model on blood circulation. Science & Education, 23(5), 1075-1099. https://doi.org/10.1007/s11191-013-9639-9
  19. Lehrer, R., & Schauble, L. (2012). Seeding evolutionary thinking by engaging children in modeling its foundations. Science Education, 96(4), 701-724. https://doi.org/10.1002/sce.20475
  20. Maia, P. F., & Justi, R. (2009). Learning of chemical equilibrium through modelling-based teaching. International Journal of Science Education, 31(5), 603-630. https://doi.org/10.1080/09500690802538045
  21. Mendonca, P. C. C., & Justi, R. (2011). Contributions of the 'model of modelling' diagram to the learning of ionic bonding: Analysis of a case study. Research in Science Education, 41(4), 479-503. https://doi.org/10.1007/s11165-010-9176-3
  22. Mendonca, P. C. C., & Justi, R. (2013). The relationships between modelling and argumentation from the perspective of the model of modelling diagram. International Journal of Science Education, 35(14), 2407-2434. https://doi.org/10.1080/09500693.2013.811615
  23. National Research Council (2007). Taking science to school: Learning and teaching science in grades K-8. In R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.), Committee on science learning, kindergarten through eighth Grade (pp. 129-210). Washington, DC: The National Academies Press.
  24. Nersessian, N. J. (2002). The cognitive basis of model-based reasoning in science. In P. Carruthers, S. Stich, & M. Siegal (Eds.), The cognitive basis of science (pp. 133-153). New York: Cambridge.
  25. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
  26. Osborne, J., Simon, S., Christodolou, A., Howell-Richardson, C., & Richardson, K. (2013). Learning to argue: A study of four schools and their attempt to develop the use of argumentation as a common instructional practice and its impact on students. Journal of Research in Science Teaching, 50(3), 315-347. https://doi.org/10.1002/tea.21073
  27. Park, H., Kim, H., Jang, S., Shim, Y., Kim, C.-J., Kim, H.,-B., ... Park, K.-M. (2014). Characteristics of social interaction in scientific modeling instruction on combustion in middle school. Journal of the Korean Chemical Society, 58(4), 393-405. https://doi.org/10.5012/jkcs.2014.58.4.393
  28. Passmore, C., & Stewart, J. (2002). A modeling approach to teaching evolutionary biology in high schools. Journal of Research in Science Teaching, 39(3), 185-204. https://doi.org/10.1002/tea.10020
  29. Passmore, C., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554. https://doi.org/10.1080/09500693.2011.577842
  30. Radinsky, J., Oliva, S., & Alamar, K. (2010). Camila, the earth, and the sun: Constructing an idea as shared intellectual property. Journal of Research in Science Teaching, 47(6), 619-642.
  31. Sampson, V., & Clark, D. (2009). The impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448-484. https://doi.org/10.1002/sce.20306
  32. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., ... Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
  33. Shim, Y., Kim, C.-J., Choe, S.-U., Kim, H.-B., Yoo, J., Park, H., ... Jang, S. (2015). Exploring small group features of the social-construction process of scientific model in a combustion class. Journal of the Korean Association for Science Education, 35(2), 217-229. https://doi.org/10.14697/jkase.2015.35.2.0217
  34. Taylor, I., Barker, M., & Jones, A. (2003). Promoting mental model building in astronomy education. International Journal of Science Education, 25(10), 1205-1225. https://doi.org/10.1080/0950069022000017270a
  35. Yu, H. W., Cha, H. J., Kim, M. S., Ham, D. C., Kim, H. B., Yoo, J. H., ... Choe, S. U. (2012). Relation between the personal and social factors and the interacting role of science gifted students in social co-construction of scientific model class. Journal of Gifted/Talented Education, 22(2), 265-290. https://doi.org/10.9722/JGTE.2012.22.2.265
  36. Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259

Cited by

  1. 분산 인지의 관점에 따른 모델링 중심 초등 과학 수업의 해석 vol.36, pp.1, 2016, https://doi.org/10.15267/keses.2017.36.1.016
  2. 협력적 비유 생성 활동에서 나타나는 비유의 변화 유형과 토론의 특징 vol.37, pp.3, 2017, https://doi.org/10.14697/jkase.2017.37.3.407
  3. 과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석 vol.37, pp.4, 2016, https://doi.org/10.14697/jkase.2017.37.4.539
  4. 볼록렌즈가 상을 만드는 원리에 대한 과학적 모형의 사회적 구성 프로그램 개발 및 적용 vol.28, pp.5, 2016, https://doi.org/10.3807/kjop.2017.28.5.203
  5. 과학관련 사회쟁점(SSI) 토론 수업에서 스마트 기기의 활용 방식과 수업의 특징 vol.37, pp.5, 2016, https://doi.org/10.14697/jkase.2017.37.5.787
  6. 과학관련 사회쟁점(SSI) 수업의 소집단 토론과 전체 학급 토론에서 나타나는 특징 vol.38, pp.2, 2016, https://doi.org/10.14697/jkase.2018.38.2.135
  7. 예비과학교사의 비유 생성 수업 계획 및 시연에서 나타나는 특징 vol.38, pp.4, 2018, https://doi.org/10.14697/jkase.2018.38.4.587
  8. 2015 개정 교육과정에 따른 과학탐구실험 교과서에 나타난 참탐구 요소 분석 vol.63, pp.3, 2016, https://doi.org/10.5012/jkcs.2019.63.3.183