• Title/Summary/Keyword: scientific gifted student

Search Result 84, Processing Time 0.022 seconds

The Effects of Field Trip Learning Program on Plant Inquiry in Coastal Dune using Artificial Intelligence on the Affective Domain of Gifted Elementary Science Studentt (인공지능을 활용한 해안사구 식물 탐구 프로그램이 초등 과학영재의 정의적 영역에 미치는 영향)

  • Byeon, Jung-Ho
    • Journal of Science Education
    • /
    • v.46 no.1
    • /
    • pp.53-65
    • /
    • 2022
  • In the application and composition of learning content, the field trip learning of scientific inquiry could provide a positive effect. Also, it can arouse an experience of various inquiry activities through open thinking. In addition, it could take a positive effect by providing the diversity and specificity of wildlife experience for the living organism. The biology inquiry program of the field trip is a necessary process to acquire ecological experiences in the learning context. However, there is some problem to solve before the performance of field trip learning as professional knowledge of the outdoors inquiry. Therefore, this study developed a field trip inquiry program for the plant in a coastal dune using artificial intelligence to assist professional knowledge. The researcher carried out literature reviews and analysis related to studies and programs to investigate learning steps, content, and strategy. Also, this study investigated the effects of the program on the affective domain of gifted elementary science students. According to the results of this study, the program can provide a positive effect on motivation, task commitment, and attitude level. Consequently, the field trip learning program for plant in the coastal dune using artificial intelligence developed in this study can arouse a positive effect on the affective domain. Therefore, additional study is necessary related to inquiry programs of the field trip for various students and sites.

The Development on Core Competency Model of Scientist and Its Verification for Competency-Based Science Gifted Education (역량 중심의 과학 영재 교육을 위한 과학자의 핵심 역량 모델 개발 및 타당화)

  • Park, Jae-Jin;Yoon, Jihyun;Kang, Seong-Joo
    • Journal of Gifted/Talented Education
    • /
    • v.24 no.4
    • /
    • pp.509-541
    • /
    • 2014
  • There was a great need to consider a core competency-based approach as a new direction of the science education for gifted students according to the value and vision of the 21st century knowledge-based societies. Therefore we developed a core competency model of scientist and examined its validity as a prerequisite for a core competency-based education of science gifted students. In order to this, the survey was conducted after developing questionnaire through the theoretical review of the various resources such as paper, book, and newspaper articles and the qualitative analysis of the behavioral event interview, and then an exploratory factor analysis was performed to validate the factor structure based on the results of the survey. The results revealed that the core competency model with the 5 cluster units of competency and the 15 core competencies was potentially constituted. And the reliability, convergent validity, and discriminant validity of the core competency model were verified through the confirmatory factor analysis. The cognitive cluster consisted of 5 competencies and they were as follows: creative, comprehensive, exploratory, analytical, and conceptual thinking competency. The achievement-orientation cluster consisted of 3 competencies and they were as follows: initiative, preparation & problem solving, and strategic influence competency. The scientific attitude cluster consisted of 3 competencies and they were as follows: flexible thinking & attitude, passion for research, and views about science competency. The personal effectiveness cluster consisted of 2 competencies and they were as follows: diverse experiences and global attitude competency. Finally, the networking cluster consisted of 2 competencies and they were as follows: personal understanding and communication competency. Findings were expected to provide the basic data for developing programs and establishing strategies based on the core competency as well as introducing the core competency model of scientist to science education for gifted students effectively.

Exploring the Creativity of the Scientific Gifted from Analyzing Descriptive Experiment-Design (서술적 실험 설계분석을 통한 과학 영재 창의성 탐색)

  • Kim, Se-Mi;Cho, Mi-Young;Kim, Sung-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.1
    • /
    • pp.129-145
    • /
    • 2012
  • This study investigated factors of creativity and interaction between factors that are revealed when gifted students designed scientific experiments. For this, we firstly developed items which required the written process of designing experiments to explore creativity factors. Then, we used these items as a part for letters of self-introduction to students who applied for 2011 correspondence education of general physics for the Korea Physics Olympiad. 513th letters of self-introduction which were analyzed to investigate factors of creativity in view of creativity definition after researchers' consultation, which specifically means a combination of divergent and convergent thinking. The results were as follows; (1) in the step of hypothesis building, we could not only find Originality and the Flexibility & Fluency, which were factors of divergent thinking, but also Coherency and Elaborateness, which were factors of convergent thinking. (2) in the step of the hypothesis testing, we could explore Originality, Flexibility & Fluency in divergent thinking and Coherency, Reliability, Clarity, Elaborateness in convergent thinking. (3) we also figured out three creativity types of gifted students from the viewpoint that creativity is a consequence of interaction between divergent thinking and convergent thinking; a) Type A showed divergent and convergent factors of creativity in the step of hypothesis building. However, type A did not include divergent factors of creativity on the process of the hypothesis testing. b) Type B had divergent and convergent factors of creativity on the process of the hypothesis testing, but it had not convergent factors of creativity on the step of hypothesis building. c) Finally, in Type C, only divergent factors of creativity appeared on the process of the hypothesis testing, but convergent factors of creativity could be found on the step of hypothesis building and hypothesis testing.

Understanding Purposes and Functions of Students' Drawing while on Geological Field Trips and during Modeling-Based Learning Cycle (야외지질답사 및 모델링 기반 순환 학습에서 학생들이 그린 그림의 목적과 기능에 대한 이해)

  • Choi, Yoon-Sung
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.88-101
    • /
    • 2021
  • The purpose of this study was to qualitatively examine the meaning of students' drawings in outdoor classes and modeling-based learning cycles. Ten students were observed in a gifted education center in Seoul. Under the theme of the Hantan River, three outdoor classes and three modeling activities were conducted. Data were collected to document all student activities during field trips and classroom modeling activities using simultaneous video and audio recording and observation notes made by the researcher and students. Please note it is unclear what this citation refers to. If it is the previous sentence it should be placed within that sentence's punctuation. Hatisaru (2020) Ddrawing typess were classified by modifying the representations in a learning context in geological field trips. We used deductive content analysis to describe the drawing characteristics, including students writing. The results suggest that students have symbolic images that consist of geologic concepts, visual images that describe topographical features, and affective images that express students' emotion domains. The characteristics were classified into explanation, generality, elaboration, evidence, coherence, and state-of-mind. The characteristics and drawing types are consecutive in the modeling-based learning cycle and reflect the students' positive attitude and cognitive scientific domain. Drawing is a useful tool for reflecting students' thoughts and opinions in both outdoor class and classroom modeling activities. This study provides implications for emphasizing the importance of drawing activities.