• Title/Summary/Keyword: science magic

Search Result 98, Processing Time 0.029 seconds

Applying Genetic Algorithm To Randomly Creating And Solving A Sudoku Puzzle (유전 알고리즘을 이용한 스도쿠 퍼즐 생성 및 풀이 방법)

  • Hwang, Yoon Chan
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.521-526
    • /
    • 2015
  • A Sudoku puzzle is a kind of magic square puzzle which requires a non-repeated series of numbers from 1 to 9 in each 9 rows and 9 columns. Furthermore it contains total of 9 small three-by-three matrices, which need non-repeated numbers from 1 to 9 as well. Therefore the total number of possible cases of Sudoku puzzle is finite, even though that of creating nine-by-nine square is exponentially great. Accordingly a certain set of way is need not only for solving the puzzle, but also creating a new one. In this study, the method for creating a Sudoku puzzle applying genetic algorithm is suggested and will be demonstrated. Also, it will be shown that a Sudoku puzzle can be solved by genetic algorithm.

  • PDF

Structural characteristics of [N(CH3)4]2CdCl4 determined by 1H MAS NMR, 13C CP/ MAS NMR, and 14N NMR

  • Lee, Seung Jin;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.1
    • /
    • pp.18-22
    • /
    • 2015
  • The structural geometry of $[N(CH_3)_4]_2CdCl_4$ in a hexagonal phase is studied by $^1H$ MAS NMR, $^{13}C$ CP/MAS NMR, and $^{14}N$ NMR. The changes in the chemical shifts for $^{13}C$ and $^{14}N$ in the hexagonal phase are explained by the structural geometry. In addition, the temperature dependencies of the spin-lattice relaxation time in the rotating frame $T_{1{\rho}}$ for $^1H$ MAS NMR and $^{13}C$ CP/MAS NMR are measured.

Thermodynamic and Physical Properties of (NH4)2MnCl4·2H2O by Nuclear Magnetic Resonance Relaxation Times

  • Kim, Yoo Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.2
    • /
    • pp.40-45
    • /
    • 2019
  • The phase transition temperatures and thermodynamic properties of $(NH_4)_2MnCl_4{\cdot}2H_2O$ grown by the slow evaporation method were studied using differential scanning calorimetry and thermogravimetric analysis. A structural phase transition occurred at temperature $T_{C1}$ (=264 K), whereas the changes at $T_{C2}$ (=460 K) and $T_{C3}$ (=475 K) seemed to be chemical changes caused by thermal decomposition. In addition, the chemical shift and the spin-lattice relaxation time $T_{1{\rho}}$ were investigated using $^1H$ magic-angle spinning nuclear magnetic resonance (MAS NMR), in order to understand the role of $NH_4{^+}$ and $H_2O$. The rise in $T_{1{\rho}}$ with temperature was related to variations in the symmetry of the surrounding $H_2O$ and $NH_4{^+}$.

Gamma-ray Emission from Globular Clusters

  • Tam, Pak-Hin T.;Hui, Chung Y.;Kong, Albert K. H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

Carbon-13 CP MAS NMR Study on Structures of Octadecyl Chains Influenced by Co-Presence of 3-Aminopropyl Chains on SBA-15

  • Han, Oc-Hee;Bae, Yoon-Kyung;Jeong, Soon-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.405-407
    • /
    • 2008
  • Functionalized SAB-15 samples by octadecyltrimethoxysilane (OTC) were studied by 13C magic angle spinning (MAS) cross polarization (CP) nuclear magnetic resonance (NMR) spectroscopy. In the SBA-15 sample fully functionalized by 3-aminopropyltrimethoxysilane (APS) and OTC in 1:1 molar ratio, octadecyl chains were observed to have, on average, more trans conformation than those in the SBA-15 samples fully modified by OTC only. Our results confirm that long chain molecules tend to organize themselves better in the co-presence of short chain molecules on the surface of mesoporous materials by packing of the different length chains in an interdigitized fashion even when the short chains are long enough to have three carbons and a functional group at the ends. In addition, our results indicate that solid-state 13C CP MAS NMR spectroscopy is a simple and non-destructive method to probe the molecular structures of the domains composed of long alkyl chains.

Market Trend and Current Status of the Research and Development of Antibody-Drug Conjugates

  • Kwon, Sun-Il
    • Biomedical Science Letters
    • /
    • v.27 no.3
    • /
    • pp.121-133
    • /
    • 2021
  • Antibody-drug conjugates (ADCs) are drawing much interest due to its great potential to be one of the important options in cancer treatments. ADCs are acting like a magic bullet which delivers cytotoxic drugs specifically to cancerous cells throughout the body, thus attacks these cells, while not harming healthy cells. ADCs are complex molecules that are composed of an antibody having targeting capability and linked-payload or cytotoxic drug killing cancerous cells. The key factors of the success in the development of ADC are selection of appropriate antibody, cytotoxic payload and linker for conjugation. Recently there was considerable progress in ADCs development, and a large number of ADCs gained US FDA approval. About 80 new ADCs are under active clinical studies. In this review we present a brief introduction of the US-FDA approved ADCs and global situation in the clinical studies of ADC pipelines. We address an overview on each component of an ADC design such as target antigens, payloads, linkers, conjugation methods, drug antibody ratio. In addition, we discuss on the trend of ADC market where global big pharmas and domestic biopharmaceutical companies are competing to develop safer and more effective ADCs.

Study on Research for Reducing Radiation Dose of Head and Neck for Cephalometric Radiography System (두부규격방사선촬영장치의 두경부 피폭 저감에 대한 연구)

  • OH, Yoonjin;Shin, Jae-won;Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.291-298
    • /
    • 2016
  • Recently, the interest in the orthodontic treatment for children is increased by a rise in national income level. The number of cephalometric radiography that could diagnose a malocclusion and malposition between teeth and jawbone increased. It required attention to radiation exposure, because the subject of dental examination is children which are more sensitive to radiation and the head and neck, the object of that include radiation sensitive organ such as the thyroid, bone marrow, eyes, salivary gland, and so on. In this study, we measured two-dimensional dose distribution in cephalometric radiography system (VATEC Pax-400C) using Agfa CP-G Plus film and MagicMax Dosimeter, and calculated radiation organ dose of head and neck through MCNPX simulation. And then we designed a radiation protective device to decrease radiation dose. The dose distribution of the cephalometric radiography system irradiated the head and neck overall as well as the oral and maxillofacial parts. The radiation organ dose calculated that thyroid, oesophagus and eyes are irradiated high, and the radiation organ dose decreased about 70 ~ 80% by the application of the radiation protective device. The results of this study will be used construction of database for dental radiation exposure and research of reducing radiation dose.

The Elementary Students' Understanding of Computer Science Through The Computer Science Show Program (컴퓨터과학 쇼를 통한 초등학생의 정보교육에 대한 인식변화)

  • Han, Byoungrae
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.2
    • /
    • pp.209-217
    • /
    • 2017
  • Recently SW education has been emphasized in Korea, but many students do not have many opportunities to learn computer science. In this paper, I organized a computer science show to enhance interest and understanding of computer science. The computer science show consisted of understanding binary systems, send a text message, parity bit magic, finding a number card, and collecting colors (orange games). I applied the computer science show to elementary school students and looked at the results. Most of the students who participated in computer science shows did not have an "participation experience of computer science shows". As result of surveys, many students answered "I am interesting about computer science shows," "I am interested in computer science," and "I would recommend it to my friends nearby." Through research, I learned that computer science shows are a way for elementary students to draw interest in computer science and to create curiosity and interest in computer science. I found from research that computer science shows are a way to reduce students' learning burdens and to increase interest in computer science.

A Study on the Characteristics of a 400W, 7.9~8.4GHz Double-Slot Coupled-Cavity Traveling-Wave Tube (400W, 7.9~8.4GHz 이중슬롯 결합공진기 진행파관 증폭기 특성 연구)

  • Kim, Hyoung-Jong;Kim, Hae-Jin;Choi, Jin-Joo;So, Jun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.760-767
    • /
    • 2009
  • This thesis focuses on the study of high-power, coupled-cavity traveling-wave tube(CCTWT) for radar applications. The CCTWT employed a reentrant double-slot staggered RF cavity structure. Computational analysis of the X-band, double-slot staggered structures is carried out through the use of HFSS code, which solves Maxwell's equations fully in three-dimensions. The non-linear, large-signal performance of CCTWTs are predicted from numerical simulations using a three-dimensional particle-in-cell code, MAGIC3D. With beam voltage set to 12.7~13kV and beam current at 300mA, the CCTWT produces a saturated radiation power of 350~430W, corresponding to an electronic efficiency of 8.9~11.2% and a gain of 23.7~24.2dB within a frequency range of 7.9~8.4GHz.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.