Browse > Article
http://dx.doi.org/10.12972/kjhst.20170018

Genomic Tools and Their Implications for Vegetable Breeding  

Phan, Ngan Thi (Department of Bioresources Engineering, Sejong University)
Sim, Sung-Chur (Department of Bioresources Engineering, Sejong University)
Publication Information
Horticultural Science & Technology / v.35, no.2, 2017 , pp. 149-164 More about this Journal
Abstract
Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.
Keywords
NGS; molecular marker; linkage analysis; genome-wide association study; marker-assisted selection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yuste-Lisbona FJ, Capel C, Sarria E, Torreblanca R, Gomez-Guillamon ML, Capel J, et al. (2010) Genetic linkage map of melon (Cucumis melo L.) and localization of a major QTL for powdery mildew resistance. Mol Breed 27:181-192. doi:10.1007/s11032-010-9421-5
2 Zhang C, Liu L, Zheng Z, Sun Y, Zhou L, Yang Y, et al. (2013) Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato. Theor Appl Genet 126:2643-2653. doi:10.1007/s00122-013-2162-1   DOI
3 Zhang H, Yi H, Wu M, Zhang Y, Zhang X, Li M, Wang G (2016) Mapping the flavor contributing traits on "Fengwei melon" (Cucumis melo L.) chromosomes using parent resequencing and super bulked-segregant analysis. PLoS One 11:e0148150. doi:10.1371/journal.pone.0148150   DOI
4 Zhang XP, Rhodes BB, Baird WV (1996) Development of genic male-sterile watermelon lines with delayed-green seedling marker. HortScience 31:123-126
5 Zhang Z, Mao L, Chen H, Bu F, Li G, Sun J, et al. (2015) Genome-wide mapping of structural variations reveals a copy number variant that determines reproductive morphology in cucumber. Plant Cell 27:1595-1604. doi:10.1105/tpc.114.135848   DOI
6 Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5-20. doi:10.3835/plantgenome2008.02.0089   DOI
7 Geethanjali S, Chen K-Y, Pastrana DV, Wang J-F (2010) Development and characterization of tomato SSR markers from genomic sequences of anchored BAC clones on chromosome 6. Euphytica 173:85-97. doi:10.1007/s10681-010-0125-z   DOI
8 Geethanjali S, Kadirvel P, de la Pena R, Rao ES, Wang J-F (2011) Development of tomato SSR markers from anchored BAC clones of chromosome 12 and their application for genetic diversity analysis and linkage mapping. Euphytica 178:283-295. doi:10.1007/s10681-010-0331-8   DOI
9 Gorjanc G, Jenko J, Hearne SJ, Hickey JM (2016) Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genomics 17:30. doi:10.1186/s12864-015-2345-z   DOI
10 Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al. (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51-58. doi:10.1038/ng.2470   DOI
11 Guo X, Wang H, Pandey M, Ji X, Holbrook C, Culbreath A, et al. (2015) Phenotypic assessments of peanut nested association mapping (NAM) populations. University of Georgia Plant Center Retreat Meeting (Abstract)
12 Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461-485. doi:10.1007/s11103-005-0257-z   DOI
13 He S, Schulthess AW, Mirdita V, Zhao B, Korzun V, Bothe R, et al. (2016) Genomic selection in a commercial winter wheat population. Theor Appl Genet 129:641-651. doi:10.1007/s00122-015-2655-1   DOI
14 McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, et al. (2009) Genetic properties of the maize nested association mapping population. Science 325 737-740. doi:10.1126/science.1174320   DOI
15 Maharijaya A, Vosman B, Steenhuis-Broers G, Pelgrom K, Purwito A, Visser RG, Voorrips RE (2015) QTL mapping of thrips resistance in pepper. Theor Appl Genet 128:1945-1956. doi:10.1007/s00122-015-2558-1   DOI
16 Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. (2009) Finding the missing heritability of complex diseases. Nature 461:747-753   DOI
17 Maurer A, Draba V, Pillen K (2016) Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. J Exp Bot 67:2507-2518. doi:10.1093/jxb/erw070   DOI
18 Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, et al. (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4:e5795. doi:10.1371/journal.pone.0005795   DOI
19 Robbins MD, Casler MD, Staub JE (2008) Pyramiding QTL for multiple lateral branching in cucumber using inbred backcross lines. Mol Breed 22:131-139. doi:10.1007/s11032-008-9162-x   DOI
20 Robbins MD, Masud MAT, Panthee DR, Gardner RG, Francis DM, Stevens MR (2010) Marker-assisted selection for coupling phase resistance to Tomato Spotted Wilt Virus and Phytophthora infestans (late blight) in tomato. HortScience 45:1424-1428
21 Robert VJM, West MAL, Inai S, Caines A, Arntzen L, Smith JK, Clair DAS (2001) Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Mol Breed 8:217-233. doi:10.1023/A:1013734024200   DOI
22 Sakata Y, Kubo N, Morishita M, Kitadani E, Sugiyama M, Hirai M (2006) QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Genet 112:243-250. doi:10.1007/s00122-005-0121-1   DOI
23 Shang J, Li N, Li N, Xu Y, Ma S, Wang J (2016) Construction of a high-density genetic map for watermelon (Citrullus lanatus L.) based on large-scale SNP discovery by specific length amplified fragment sequencing (SLAF-seq). Sci Hort 203:38-46. doi:10.1016/j.scienta.2016.03.007   DOI
24 Shirasawa K, Fukuoka H, Matsunaga H, Kobayashi Y, Kobayashi I, Hirakawa H, et al. (2013) Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. DNA Res 20:593-603. doi:10.1093/dnares/dst033   DOI
25 Barabaschi D, Guerra D, Lacrima K, Laino P, Michelotti V, Urso S, et al. (2012) Emerging knowledge from genome sequencing of crop species. Mol Biotechnol 50:250-266. doi:10.1007/s12033-011-9443-1   DOI
26 Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, et al. (2009) Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519-530. doi:10.1007/s00122-009-1060-z   DOI
27 Bajgain P, Rouse MN, Tsilo TJ, Macharia GK, Bhavani S, Jin Y, Anderson JA (2016) Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. PLoS One 11:e0155760. doi:10.1371/journal.pone.0155760   DOI
28 Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, et al. ( 2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11. doi:10.1186/1939-8433-6-11   DOI
29 Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Vale G, Cattivelli L (2016) Next generation breeding. Plant Sci 242:3-13. doi:10.1016/j.plantsci.2015.07.010   DOI
30 Behera TK, Staub JE, Behera S, Mason S (2010) Response to phenotypic and marker-assisted selection for yield and quality component traits in cucumber (Cucumis sativus L.). Euphytica 171:417-425. doi:10.1007/s10681-009-0072-8   DOI
31 Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969-977. doi:10.1104/pp.108.118232   DOI
32 Merk HL, Yarnes SC, Van Deynze A, Tong N, Menda N, Mueller LA, et al. (2012) Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. J Am Soc Hortic Sci 6:427-437
33 Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829
34 Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:1-7. doi:10.3835/plantgenome2013.03.0001in
35 Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A (2000) A CAPS marker to assist selection of Tomato spotted wilt virus (TSWV) resistance in pepper. Genome 43:137-142. doi:10.1139/g99-098   DOI
36 Munos S, Ranc N, Botton E, Berard A, Rolland S, Duffe P, et al. (2011) Increase in tomato locule number is controlled by two singlenucleotide polymorphisms located near WUSCHEL. Plant Physiol 156:2244-2254. doi:10.1104/pp.111.173997   DOI
37 Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F, Tohge T, et al. (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46:1034-1038. doi:10.1038/ng.3046   DOI
38 Sim S, Durstewitz G, Plieske J, Wieseke R, Ganal M, Van Deynze A, et al. (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7:e40563. doi:10.1371/journal.pone.0040563   DOI
39 Behera TK, Staub JE, Behera S, Rao AR, Mason S (2008) One cycle of phenotypic selection combined with marker assisted selection for improving yield and quality in cucumber. Cucurbitaceae 2008:115-122.
40 Blanca J, Esteras C, Ziarsolo P, Perez D, Fernandez-Pedrosa V, Collado C, et al. (2012) Transcriptome sequence for SNP discovery across Cucumis melo. BMC Genomics 13:280. doi:10.1186/1471-2164-13-280   DOI
41 Brotman Y, Kovalski I, Dogimont C, Pitrat M, Portnoy V, Katzir N, Perl-Treves R (2005) Molecular markers linked to papaya ring spot virus resistance and Fusarium race 2 resistance in melon. Theor Appl Genet 110:337-345. doi:10.1007/s00122-004-1845-z   DOI
42 Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, Riordan TP, Dweikat I (2004) Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet 108:328-334. doi:10.1007/s00122-003-1428-4   DOI
43 Cabezuelo JMG-, Capel J, Abad J, Tomas DM, Fernandez-Munoz R, Moriones E, Lozano R (2012) Genotyping selection for resistance against Tomato Yellow Leaf Curl Virus (TYLCV) conferred by Ty-1 and Ty-3 genes in tomato. Mol Breed 30:1131-1142. doi:10.1007/s11032-012-9701-3   DOI
44 Castro AMP, Vilanova S, Canizares J, Pascual L, Blanca JM, Diez MJ, et al. (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179-195. doi:10.2174/138920212800543084   DOI
45 Causse M, Desplat N, Pascual L, Paslier M-CL, Sauvage C, Bauchet G, et al. (2013) Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics 14:791. doi:10.1186/1471-2164-14-791   DOI
46 Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156-161. doi:10.1016/j.pbi.2007.01.003   DOI
47 Zhu WY, Huang L, Chen L, Yang JT, Wu JN, Qu ML, et al. (2016) A high-density genetic linkage map for cucumber (Cucumis sativus L.): Based on specific length amplified fragment (SLAF) sequencing and QTL analysis of fruit traits in cucumber. Front Plant Sci 7:437. doi:10.3389/fpls.2016.00437
48 Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1-12. doi:10.2135/cropsci2008.08.0512   DOI
49 Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA (2004) Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theor Appl Genet 109:409-418. doi:10.1007/s00122-004-1646-4
50 Heusden AWv, Koornneef M, Voorrips RE, Bruggemann W, Pet G, Vrielink-van Ginkel R, et al. (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibactermichiganensis ssp. michiganensis. Theor Appl Genet 99:1068-1074. doi:10.1007/s001220051416   DOI
51 Huang B, Paulob M-J, Boerb M, Effgena S, Keizerb P, Koornneef M, Eeuwijk FAv (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci USA 108:4488-4493. doi:10.1073/pnas.1100465108   DOI
52 Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation intercross population for genetic analysis in wheat. Plant Biotechnol J 10:826-839. doi:10.1111/j.1467-7652.2012.00702.x   DOI
53 Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275-1281. doi:10.1038/ng.475   DOI
54 Hutton SF, Scott JW, Yang W, Sim S, Francis DM, Jones JB (2010) Identification of QTL associated with resistance to bacterial spot race T4 in tomato. Theor Appl Genet 121:1275-1287. doi:10.1007/s00122-010-1387-5   DOI
55 Natarajan S, Kim HT, Thamilarasan SK, Veerappan K, Park JI, Nou IS (2016) Whole genome re-sequencing and characterization of powdery mildew disease-associated allelic variation in melon. PLoS One 11:e0157524. doi:10.1371/journal.pone.0157524   DOI
56 Sim SC, Robbins MD, Wijeratne S, Wang H, Yang WC, Francis DM (2015) Association analysis for Bacterial Spot resistance in a directionally selected complex breeding population of tomato. Phytopathology 105:1437-1445. doi:10.1094/PHYTO-02-15-0051-R   DOI
57 Staniaszek M, Sczechura W, Marczewski W (2014) Identification of a new molecular marker C2-25 linked to the Fusarium oxysporum f.sp. radicis-lycopersici resistance Frl gene in tomato. Czech J Genet Plant Breed 50:285-287   DOI
58 Steinmetz KA, Potter JD (1996) Vegetables, fruit, and cancer prevention. J Am Diet Assoc 96:1027-1039. doi:10.1016/S0002-8223(96)00273-8   DOI
59 Stich B (2009) Comparison of mating designs for establishing nested association mapping populations in maize and Arabidopsis thaliana. Genetics 183:1525-1534. doi:10.1534/genetics.109.108449   DOI
60 Sun C, Mao SL, Zhang ZH, Palloix A, Wang LH, Zhang BX (2015) Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Sci Hort 181:81-88. doi:10.1016/j.scienta.2014.10.033   DOI
61 Takken FLW, Schipper D, Nijkamp HJJ, Hille J (1998) Identification and Ds-tagged isolation of a new gene at the Cf-4 locus of tomato involved in disease resistance to Cladosporium fulvum race 5. Plant J 14:401-411. doi:10.1046/j.1365-313X.1998.00135.x   DOI
62 Tanaka Y, Yoneda H, Hosokawa M, Miwa T, Yazawa S (2014) Application of marker-assisted selection in breeding of a new fresh pepper cultivar (Capsicum annuum) containing capsinoids, low-pungent capsaicinoid analogs. Sci Hort 165:242-245. doi:10.1016/j.scienta.2013.10.025   DOI
63 Nimmakayala P, Levi A, Abburi L, Abburi L, Tomason YR, Saminathan T, et al. (2014b) Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon. BMC Genomics 15:767. doi:10.1186/1471-2164-15-767   DOI
64 Nice LM, Steffenson BJ, Guedira GLB, Akhunov ED, Liu D, Kono TJY, et al. (2016) Development and genetic characterization of an advanced backcross-nested association mapping (AB-NAM) population of wild x cultivated barley. Genetics 203:1453-1467. doi:10.1534/genetics.116.190736   DOI
65 Nicolai M, Pisani C, Bouchet JP, Vuylsteke M, Palloix A (2012) Discovery of a large set of SNP and SSR genetic markers by highthroughput sequencing of pepper (Capsicum annuum). Genet Mol Res 11:2295-2300. doi:10.4238/2012.August.13.3   DOI
66 Nimmakayala P, Abburi VL, Abburi L, Alaparthi SB, Cantrell R, Park M, et al. (2014a) Linkage disequilibrium and populationstructure analysis among Capsicum annuum L. cultivars for use in association mapping. Mol Genet Genomics 289:513-521. doi:10.1007/s00438-014-0827-3   DOI
67 Ning X, Wang X, Gao X, Zhang Z, Zhang L, Yan W, Li G (2014) Inheritances and location of powdery mildew resistance gene in melon Edisto47. Euphytica 195:345-353. doi:10.1007/s10681-013-1000-5   DOI
68 Palomares-Rius FJ, Viruel MA, Yuste-Lisbona FJ, Lopez-Sese AI, Gomez-Guillamon ML (2011) Simple sequence repeat markers linked to QTL for resistance to Watermelon Mosaic Virus in melon. Theor Appl Genet 123:1207-1214. doi:10.1007/s00122-011-1660-2   DOI
69 Cheng Y, Luan F, Wang X, Gao P, Zhu Z, Liu S, et al. (2016) Construction of a genetic linkage map of watermelon (Citrullus lanatus ) using CAPS and SSR markers and QTL analysis for fruit quality traits. Sci Hort 202:25-31. doi:10.1016/j.scienta.2016.01.004   DOI
70 Tezuka T, Waki K, Kuzuya M, Ishikawa T, Takatsu Y, Miyagi M (2011) Development of new DNA markers linked to the Fusarium wilt resistance locus Fom-1 in melon. Plant Breeding 130:261-267. doi:10.1111/j.1439-0523.2010.01800.x   DOI
71 Coaker GL, Francis DM (2004) Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor Appl Genet 108:1047-1055. doi:10.1007/s00122-003-1531-6   DOI
72 Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc London 363:557-572. doi:10.1098/rstb.2007.2170   DOI
73 Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800-804. doi:10.1038/ng.144   DOI
74 Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22-32. doi:10.1038/nrg701   DOI
75 Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z, et al. (2011) A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111. doi:10.1186/1471-2229-11-111   DOI
76 Duangjit J, Causse M, Sauvage C (2016) Efficiency of genomic selection for tomato fruit quality. Mol Breed 36:29. doi:10.1007/s11032-016-0453-3   DOI
77 Jablonska B, Ammiraju JS, Bhattarai KK, Mantelin S, Martinez de Ilarduya O, Roberts PA, Kaloshian I (2007) The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol 143:1044-1054. doi:10.1104/pp.106.089615
78 Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154-S163. doi:10.2135/cropsci2007.04.0015ipbs
79 Evenson RE, Gollin D (2003 ) Assessing the impact of the Green Revolution, 1960 to 2000. Science 300:758-762. doi:10.1126/science.1078710   DOI
80 Iwata H, Jannink J-L (2011) Accuracy of genomic selection prediction in barley breeding programs: A simulation study based on the real single nucleotide polymorphism data of barley breeding lines. Crop Sci 51:1915-1927. doi:10.2135/cropsci2010.12.0732   DOI
81 Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA (2004) The Fusarium wilt resistance locus Fom-2 of melon contains a single resistance gene with complex features. Plant J 39:283-297. doi:10.1111/j.1365-313X.2004.02134.x   DOI
82 Jung YJ, Nou IS, Cho YG, Kim MK, Kim H-T, Kang KK (2016) Identification of an SNP variation of elite tomato (Solanum lycopersicum L.) lines using genome resequencing analysis. Hortic Environ Biotechnol 57:173-181. doi:10.1007/s13580-016-0132-7   DOI
83 Kadirvel P, de la Pena R, Schafleitner R, Huang S, Geethanjali S, Kenyon L, et al. (2012) Mapping of QTLs in tomato line FLA456 associated with resistance to a virus causing Tomato Yellow Leaf Curl disease. Euphytica 190:297-308. doi:10.1007/s10681-012-0848-0
84 Panthee DR, Brown AF, Yousef GG, Ibrahem R, Anderson C, Havey M (2013) Novel molecular marker associated with Tm2a gene conferring resistance to tomato mosaic virus in tomato. Plant Breeding 132:413-416. doi:10.1111/pbr.12076   DOI
85 Pascual L, Albert E, Sauvage C, Duangjit J, Bouchet JP, Bitton F, et al. (2016) Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Plant Sci 242:120-130. doi:10.1016/j.plantsci.2015.06.017   DOI
86 Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L, Bouchet JP, et al. (2015) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotech J 13:565-577. doi:10.1111/pbi.12282   DOI
87 Pavan S, Zheng Z, Borisova M, van den Berg P, Lotti C, De Giovanni C, et al. (2008) Map- vs. homology-based cloning for the recessive gene ol-2 conferring resistance to tomato powdery mildew. Euphytica 162:91-98. doi:10.1007/s10681-007-9570-8   DOI
88 Pei CC, Wang H, Zhang JY, Wang YY, Francis DM, Yang WC (2012) Fine mapping and analysis of a candidate gene in tomato accession PI128216 conferring hypersensitive resistance to bacterial spot race T3. Theor Appl Genet 124:533-542. doi:10.1007/s00122-011-1726-1   DOI
89 Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, et al. (2012) Genomic selection in wheat breeding using genotyping-bysequencing. Plant Genome 5:103-113. doi:10.3835/plantgenome2012.06.0006   DOI
90 Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904-909. doi:10.1038/ng1847   DOI
91 Thabuis A, Palloix A, Servin B, Daubeze AM, Signoret P, Hospital F, Lefebvre V (2004) Marker-assisted introgression of 4 Phytophthora capsici resistance QTL alleles into a bell pepper line: validation of additive and epistatic effects. Mol Breed 14:9-20. doi:10.1023/B:MOLB.0000037991.38278.82   DOI
92 The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635-641. doi:10.1038/nature11119   DOI
93 Tomason Y, Nimmakayala P, Levi A, Reddy UK (2013) Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon. Mol Breed 31:829-841. doi:10.1007/s11032-013-9837-9   DOI
94 Truong HTH, Kim JH, Cho MC, Chae SY, Lee HE (2013) Identification and development of molecular markers linked to Phytophthora root rot resistance in pepper (Capsicum annuum L.). Eur J Plant Pathol 135:289-297. doi:10.1007/s10658-012-0085-3   DOI
95 Truong HTH, Kim K-T, Kim S, Cho M-C, Kim H-R, Woo J-G (2011) Development of gene-based markers for the Bs2 bacterial spot resistance gene for marker-assisted selection in pepper (Capsicum spp.). Hortic Environ Biotechnol 52:65-73. doi:10.1007/s13580-011-0142-4   DOI
96 United Nations (2015) World Population Prospects, The 2015 Revision. Key Findings and Advance Tables
97 Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363-371. doi:10.1016/j.tplants.2011.03.004   DOI
98 Kang WH, Hoang NH, Yang HB, Kwon JK, Jo SH, Seo JK, et al. (2010) Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor Appl Genet 120:1587-1596. doi:10.1007/s00122-010-1278-9   DOI
99 Kim KH, Hwang JH, Han DY, Park M, Kim S, Choi D, et al. (2015) Major quantitative trait loci and putative candidate genes for powdery mildew resistance and fruit-related traits revealed by an Intraspecific genetic map for watermelon (Citrullus lanatus var. lanatus). PLoS One 10:e0145665. doi:10.1371/journal.pone.0145665   DOI
100 Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945-959
101 Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: Applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883. doi:10.1371/journal.pbio.1001883   DOI
102 Wang Y, Yang W, Zhang W, Han Q, Feng M, Shen H (2013) Mapping of a heat-stable gene for resistance to Southern root-knot nematode in Solanum lycopersicum. Plant Mol Biol Rep 31:352-362. doi:10.1007/s11105-012-0505-8   DOI
103 Filho HPM, Stevens MA (1980) Tomato breeding for nematode resistance: Survey of resistant varieties for horticultural characteristics and genotype of acid phosphates. Acta Hortic 100:383-394. doi:10.17660/ActaHortic.1980.100.41
104 Faino L, Azizinia S, Hassanzadeh BH, Verzaux E, Ercolano MR, Visser RGF, Bai Y (2011) Fine mapping of two major QTLs conferring resistance to powdery mildew in tomato. Euphytica 184:223-234. doi:10.1007/s10681-011-0551-6
105 FAO (2016) http://faostat.fao.org/site/339/default.aspx
106 Fazio G, Chung SM, Staub JE (2003) Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theor Appl Genet 107:875-883. doi:10.1007/s00122-003-1313-1   DOI
107 Qi J, Liu X, Shen D, Miao H, Xie B, Li X, et al. (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510-1515. doi:10.1038/ng.2801   DOI
108 Fukino N, Ohara T, Monforte AJ, Sugiyama M, Sakata Y, Kunihisa M, Matsumoto S (2008) Identification of QTLs for resistance to powdery mildew and SSR markers diagnostic for powdery mildew resistance genes in melon (Cucumis melo L.). Theor Appl Genet 118:165-175. doi:10.1007/s00122-008-0885-1   DOI
109 Foolad MR (2007) Genome mapping and molecular breeding of tomato. Int J Plant Genomics 2007:64358. doi:10.1155/2007/64358
110 Foolad MR, Panthee DR (2012) Marker-assisted selection in tomato breeding. Crit Rev Plant Sci 31:93-123. doi:10.1080/07352689.2011.616057   DOI
111 Gabriel J, Sanabria D, Veramendi S, Plata G, Angulo A, Crespo M (2013) Genetic resistance of tomato hybrids (Solanum lycopersicum L. (Mill.) to Tomato spotted wilt virus (TSWV). Agron Costarricense 37:61-69
112 Gama RNCS, Santos CAF, Dias RCS, Alves JCSF, Nogueira TO (2015) Microsatellite markers linked to the locus of the watermelon fruit stripe pattern. Genet Mol Res 14:269-276. doi:10.4238/2015.January.16.11   DOI
113 Li C, Wang F, Yang Y, Fu F, Xu C, Shi L, et al. (2011) Significant association of SNP rs2106261 in the ZFHX3 gene with atrial fibrillation in a Chinese Han GeneID population. Hum Genet 129:239-246. doi:10.1007/s00439-010-0912-6   DOI
114 Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, et al. (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270-278. doi:10.1038/ng.2877   DOI
115 Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, et al. (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551. doi:10.1371/journal.pgen.1000551   DOI
116 Lee H-Y, Go H-C, Heo O-S, Kwon J-K, Kang BC (2015) Genome-wide association study (GWAS) in pepper using a core collection. Symp Korean Soc Breeding Sci (Abstract)
117 Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, et al. (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220-1226. doi:10.1038/ng.3117   DOI
118 Reddy UK, Almeida A, Abburi VL, Alaparthi SB, Unselt D, Hankins G, et al. (2014a) Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L. collections. PLoS One 9:e86393. doi:10.1371/journal.pone.0086393   DOI
119 Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, et al. (2014a) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA. 111:5135-5140. doi:10.1073/pnas.1400975111   DOI
120 Ranc N, Munos S, Xu J, Paslier ML, Chauveau A, Bounon R, et al. (2012) Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3-Genes Genom Genet 2:853-864. doi:10.1534/g3.112.002667
121 Reddy UK, Nimmakayala P, Levi A, Abburi VL, Saminathan T, Tomason YR, et al. (2014b) High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon. G3-Genes Genom Genet 4:2219-2230
122 Ren R, Ray R, Li P, Xu J, Zhang M, Liu G, et al. (2015a) Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon. Mol Genet Genomics 290:1457-1470. doi:10.1007/s00438-015-0997-7   DOI
123 Ren Y, Di J, Gong G, Zhang H, Guo S, Zhang J, Xu Y (2015b) Genetic analysis and chromosome mapping of resistance to Fusarium oxysporum f. sp. niveum (FON) race 1 and race 2 in watermelon (Citrullus lanatus L.). Mol Breed 35:183. doi:10.1007/s11032-015-0375-5   DOI
124 Acciarri N, Rotino GL, Tamietti G, Valentino D, Voltattorni S, Sabatini E (2007) Molecular markers for Ve1 and Ve2 Verticillium resistance genes from Italian tomato germplasm. Plant Breed 126:617-621. doi:10.1111/j.1439-0523.2007.01398.x   DOI
125 Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, et al. (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136-148. doi:10.1111/tpj.12616   DOI
126 Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, et al. (2014) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics 15:1158. doi:10.1186/1471-2164-15-1158   DOI
127 Weinberger K, Lumpkin TA (2007) Diversification into horticulture and poverty reduction: A research agenda. World Dev 35:1464-1480. doi:10.1016/j.worlddev.2007.05.002   DOI
128 Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna BM (2012) Whole-genome strategies for marker-assisted plant breeding. Mol Breed 29:833-854. doi:10.1007/s11032-012-9699-6   DOI
129 Yang L, Li D, Li Y, Gu X, Huang S, Garcia-Mas J, Weng Y (2013) A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol 13:53. doi:10.1186/1471-2229-13-53   DOI
130 Lin Y-H, Chen K-S, Liou T-D, Huang J-W, Chang P-FL (2009) Development of a molecular method for rapid differentiation of watermelon lines resistant to Fusarium oxysporum f. sp. niveum. Bot Stud 50:273-280
131 Liu S, Gao P, Zhu Q, Luan F, Davis AR, Wang X (2016) Development of cleaved amplified polymorphic sequence markers and a CAPS-based genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) constructed using whole-genome resequencing data. Breed Sci 66:244-259. doi:10.1270/jsbbs.66.244   DOI
132 Mace ES, Hunt CH, Jordan DR (2013) Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor Appl Genet 126:1377-1395. doi:10.1007/s00122-013-2059-z   DOI
133 Yang X, Caro M, Hutton SF, Scott JW, Guo Y, Wang X, et al. (2014) Fine mapping of the tomato Yellow Leaf Curl Virus resistance gene Ty-2 on chromosome 11 of tomato. Mol Breed 34:749-760. doi:10.1007/s11032-014-0072-9
134 Yang S, Fresnedo-Ramirez J, Wang M, Cote L, Schweitzer P, Barba P, et al. (2016) A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine. J Hort Res 3:16002. doi:10.1038/hortres.2016.2   DOI
135 Yang W, Francis MD (2005) Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J Amer Soc Hort Sci 130:716-721
136 Yang W, Sacks EJ, Ivey MLL, Miller SA, Francis DM (2005) Resistance in Lycopersicon esculentum intraspeciflc crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology 95:519-527. doi:10.1094/PHYTO-95-0519   DOI
137 Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539-551. doi:10.1534/genetics.107.074245   DOI
138 Gao P, Liu S, Zhu QL, Luan FS (2015) Marker-assisted selection of Fusarium wilt-resistant and gynoecious melon (Cucumis melo L.). Genet Mol Res 14:16255-16264. doi:10.4238/2015.December.8.16   DOI
139 Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, et al. (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203-208. doi:10.1038/ng1702   DOI
140 Yu JM, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155-160. doi:10.1016/j.copbio.2006.02.003   DOI
141 Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, et al. (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872-11877. doi:10.1073/pnas.1205415109   DOI
142 Amano M, Mochizuki A, Kawagoe Y, Iwahori K, Niwa K, Svoboda J, et al. (2013) High-resolution mapping of zym, a recessive gene for Zucchini yellow mosaic virus resistance in cucumber. Theor Appl Genet 126:2983-2993. doi:10.1007/s00122-013-2187-5   DOI
143 Alpert KB, Grandillo S, Tanksley SD (1995) fw 2.2:a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994-1000. doi:10.1007/bf00223911