• Title/Summary/Keyword: science learning flow

Search Result 181, Processing Time 0.023 seconds

A Study on the Revision of Copyright Limitations for Libraries in Copyright Law of Korea (저작권법상 도서관관련 권리제한의 개정안 연구)

  • Yoon, Hee-Yoon
    • Journal of Information Management
    • /
    • v.42 no.2
    • /
    • pp.1-21
    • /
    • 2011
  • The copyright law is the greatest legal tool for promoting access to knowledge and information by striking a balance between owners rights and users rights. For libraries, copyright limitations and exceptions are critical to meeting our missions to support learning and research, promote the flow of information, provide equitable access to information to the public, preserve intellectual and cultural heritage. Based on these reasons, this study analysed the limitation of copyright law of Korea for library, suggested improvement of reproduction for the library preservation and distribution including rental and lending, printout and transmission of internet information resources, copy of library materials which are rarely available through normal trade channel and government publications, reproduction and electronic transmission for persons with disabilities, and proposed fair use model(limitations on exclusive rights) for libraries.

A method for image-based shadow interaction with virtual objects

  • Ha, Hyunwoo;Ko, Kwanghee
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.26-37
    • /
    • 2015
  • A lot of researchers have been investigating interactive portable projection systems such as a mini-projector. In addition, in exhibition halls and museums, there is a trend toward using interactive projection systems to make viewing more exciting and impressive. They can also be applied in the field of art, for example, in creating shadow plays. The key idea of the interactive portable projection systems is to recognize the user's gesture in real-time. In this paper, a vision-based shadow gesture recognition method is proposed for interactive projection systems. The gesture recognition method is based on the screen image obtained by a single web camera. The method separates only the shadow area by combining the binary image with an input image using a learning algorithm that isolates the background from the input image. The region of interest is recognized with labeling the shadow of separated regions, and then hand shadows are isolated using the defect, convex hull, and moment of each region. To distinguish hand gestures, Hu's invariant moment method is used. An optical flow algorithm is used for tracking the fingertip. Using this method, a few interactive applications are developed, which are presented in this paper.

River streamflow prediction using a deep neural network: a case study on the Red River, Vietnam

  • Le, Xuan-Hien;Ho, Hung Viet;Lee, Giha
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.843-856
    • /
    • 2019
  • Real-time flood prediction has an important role in significantly reducing potential damage caused by floods for urban residential areas located downstream of river basins. This paper presents an effective approach for flood forecasting based on the construction of a deep neural network (DNN) model. In addition, this research depends closely on the open-source software library, TensorFlow, which was developed by Google for machine and deep learning applications and research. The proposed model was applied to forecast the flowrate one, two, and three days in advance at the Son Tay hydrological station on the Red River, Vietnam. The input data of the model was a series of discharge data observed at five gauge stations on the Red River system, without requiring rainfall data, water levels and topographic characteristics. The research results indicate that the DNN model achieved a high performance for flood forecasting even though only a modest amount of data is required. When forecasting one and two days in advance, the Nash-Sutcliffe Efficiency (NSE) reached 0.993 and 0.938, respectively. The findings of this study suggest that the DNN model can be used to construct a real-time flood warning system on the Red River and for other river basins in Vietnam.

Estimating United States-Asia Clothing Trade: Multiple Regression vs. Artificial Neural Networks

  • CHAN, Eve M.H.;HO, Danny C.K.;TSANG, C.W.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.7
    • /
    • pp.403-411
    • /
    • 2021
  • This study discusses the influence of economic factors on the clothing exports from China and 15 South and Southeast Asian countries to the United States. A basic gravity trade model with three predictors, including the GDP value produced by exporting and importing countries and their geographical distance was established to explain the bilateral trade patterns. The conventional approach of multiple regression and the novel approach of Artificial Neural Networks (ANNs) were developed based on the value of clothing exports from 2012 to 2018 and applied to the trade pattern prediction of 2019. The results showed that ANNs can achieve a more accurate prediction in bilateral trade patterns than the commonly-used econometric analysis of the basic gravity trade model. Future studies can examine the predictive power of ANNs on an extended gravity model of trade that includes explanatory variables in social and environmental areas, such as policy, initiative, agreement, and infrastructure for trade facilitation, which are crucial for policymaking and managerial consideration. More research should be conducted for the examination of the balance between developing countries' economic growth and their social and environmental sustainability and for the application of more advanced machine-learning algorithms of global trade flow examination.

Means of Visualization in Teaching Ukrainian as a Foreign Language to Modern Students with Clip Way of Thinking

  • Kushnir, Iryna;Zozulia, Iryna;Hrytsenko, Olha;Uvarova, Tetiana;Kosenko, Iuliia
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.55-60
    • /
    • 2022
  • Acceleration of the pace of life, increasing the amount of information, the emergence of "clip way of thinking" as a phenomenon has led to the problem of choosing forms of presentation of educational materials to students. One of the ways to solve this problem is to use the means of visualization of information flow, forasmuch as the thinking of modern youth is more effective in perceiving visual images than verbal means. The purpose of the research is to prove the effectiveness of the use of visualization in the process of teaching Ukrainian as a foreign language to students with clip way of thinking. The following methods have been used, namely: analysis, synthesis, comparison, systematization and generalization of scientific literature; testing and surveys; pedagogical experiment; quantitative and qualitative analysis of data, interpretation and generalization of the research results. The essence of visualization means has been revealed; the expediency of their use in the methodology of teaching foreign students the Ukrainian language has been substantiated. It has been proven that the role of Ukrainian teachers lies in taking into account all new trends in teaching, integrating computer perception of information by foreign students into teaching technology and using cognitive visualization in order to intensify the learning process.

Research on Hot-Threshold based dynamic resource management in the cloud

  • Gun-Woo Kim;Seok-Jae Moon;Byung-Joon Park
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.3
    • /
    • pp.471-479
    • /
    • 2024
  • Recent advancements in cloud computing have significantly increased its importance across various sectors. As sensors, devices, and customer demands have become more diverse, workloads have become increasingly variable and difficult to predict. Cloud providers, connected to multiple physical servers to support a range of applications, often over-provision resources to handle peak workloads. This approach results in inconsistent services, imbalanced energy usage, waste, and potential violations of service level agreements. In this paper, we propose a novel engine equipped with a scheduler based on the Hot-Threshold concept, aimed at optimizing resource usage and improving energy efficiency in cloud environments. We developed this engine to employ both proactive and reactive methods. The proactive method leverages workload estimate-based provisioning, while the reactive Hot-Cold Scheduler consists of a Predictor, Solver, and Processor, which together suggest an intelligent migration flow. We demonstrate that our approach effectively addresses existing challenges in terms of cost and energy consumption. By intelligently managing resources based on past user statistics, we provide significant improvements in both energy efficiency and service consistency.

Context-Based Design and Its Application Effects in Science Classes (맥락을 중요시하는 과학 수업 전략의 개발 및 적용)

  • Jung, Suk-Jin;Shin, Young-Joon
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.48-63
    • /
    • 2024
  • This study aims to develop a class procedure for the application of classrooms that value context and to conduct science classes using this procedure to examine the effects. Among various contexts related to scientific knowledge, the study develops a teaching procedure for designing classes that focus on the contexts of discovery and real life. After verifying the content validity of the context-based design and the program to which it was applied, a class was conducted, and the responses of the children were checked. The final draft of the lesson design completed after revision and supplementation is as follows: context-based design was presented in four stages, namely, presenting, exploring the context, adapting the context, and organizing (share and synthesizing; PEAS). The goal is to enable people to experience the overall flow of scientific knowledge instead of focusing on the acquisition of fragmentary knowledge by covering a wide range of topics from the social and historical contexts in which scientific knowledge was created to its use in real life. To aid in understanding the newly proposed class procedure and verifying its effectiveness, we developed a program by selecting the "My Fun Exploration," 2. Biology and Environment unit of the second semester of the fifth grade. The result indicated that the elementary science program that applied the context-centered design effectively improved the self-directed learning ability of students. In addition, the effect was especially notable in terms of intrinsic motivation. As the students experienced the contexts of discovery and real life related to scientific knowledge, they developed the desire to actively participate in science learning. As this becomes an essential condition for deriving active learning effects, a virtuous cycle in which meaningful learning can occur has been created. Based on the implications, developing programs that apply context-based design to various areas and contents will be possible.

Recognition of Free Inquiry Activity and its Effects on the Science Inquiry Ability of Middle School Students (자유 탐구 활동에 대한 중학생들의 인식 및 자유 탐구 활동이 중학생들의 과학 탐구능력에 미치는 영향)

  • Byun, Sun-Mi;Kim, Hyun-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.2
    • /
    • pp.210-224
    • /
    • 2011
  • The purpose of this study is to analyze students' recognition of the free inquiry activity and to investigate what effect the free inquiry activity of the 2007 Revised Educational curriculum revision has on the science inquiry ability of middle school students. To conduct the research we worked with 262 female students, 8 classes of first graders in a middle school. Among them, 4 classes were taught in free inquiry activity and the remaining 4 classes were taught in the traditional way. The results of Likert-questionnaire indicate that students were learning about cooperative spirit through group investigation activities and discussions and did not take the free inquiry activity as a hard activity. Also they showed positive reaction agreeing that this activity is both a helpful method in learning science and interesting. However, it seemed that the investigation tends to flow between the leading 1~2 members of the group and showed difficulty in carrying out the investigation as a group after school hours. It showed there are few problems and obstacles in operating the free inquiry activity. The free inquiry activity did not give any meaningful influence on the improvement of science inquiry ability of students. Integrative inquiry process skills did not give a relevant influence, however, it showed a meaningful influence on the improvement of basic inquiry process skills. Especially, among the low-ranking element of basic inquiry process skills, it enhanced the capacity for prediction.

Development of Quantification Methods for the Myocardial Blood Flow Using Ensemble Independent Component Analysis for Dynamic $H_2^{15}O$ PET (동적 $H_2^{15}O$ PET에서 앙상블 독립성분분석법을 이용한 심근 혈류 정량화 방법 개발)

  • Lee, Byeong-Il;Lee, Jae-Sung;Lee, Dong-Soo;Kang, Won-Jun;Lee, Jong-Jin;Kim, Soo-Jin;Choi, Seung-Jin;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.6
    • /
    • pp.486-491
    • /
    • 2004
  • Purpose: factor analysis and independent component analysis (ICA) has been used for handling dynamic image sequences. Theoretical advantages of a newly suggested ICA method, ensemble ICA, leaded us to consider applying this method to the analysis of dynamic myocardial $H_2^{15}O$ PET data. In this study, we quantified patients' blood flow using the ensemble ICA method. Materials and Methods: Twenty subjects underwent $H_2^{15}O$ PET scans using ECAT EXACT 47 scanner and myocardial perfusion SPECT using Vertex scanner. After transmission scanning, dynamic emission scans were initiated simultaneously with the injection of $555{\sim}740$ MBq $H_2^{15}O$. Hidden independent components can be extracted from the observed mixed data (PET image) by means of ICA algorithms. Ensemble learning is a variational Bayesian method that provides an analytical approximation to the parameter posterior using a tractable distribution. Variational approximation forms a lower bound on the ensemble likelihood and the maximization of the lower bound is achieved through minimizing the Kullback-Leibler divergence between the true posterior and the variational posterior. In this study, posterior pdf was approximated by a rectified Gaussian distribution to incorporate non-negativity constraint, which is suitable to dynamic images in nuclear medicine. Blood flow was measured in 9 regions - apex, four areas in mid wall, and four areas in base wall. Myocardial perfusion SPECT score and angiography results were compared with the regional blood flow. Results: Major cardiac components were separated successfully by the ensemble ICA method and blood flow could be estimated in 15 among 20 patients. Mean myocardial blood flow was $1.2{\pm}0.40$ ml/min/g in rest, $1.85{\pm}1.12$ ml/min/g in stress state. Blood flow values obtained by an operator in two different occasion were highly correlated (r=0.99). In myocardium component image, the image contrast between left ventricle and myocardium was 1:2.7 in average. Perfusion reserve was significantly different between the regions with and without stenosis detected by the coronary angiography (P<0.01). In 66 segment with stenosis confirmed by angiography, the segments with reversible perfusion decrease in perfusion SPECT showed lower perfusion reserve values in $H_2^{15}O$ PET. Conclusions: Myocardial blood flow could be estimated using an ICA method with ensemble learning. We suggest that the ensemble ICA incorporating non-negative constraint is a feasible method to handle dynamic image sequence obtained by the nuclear medicine techniques.

The Analysis of Robot Education Unit in the Practical Arts Textbooks According to 2015 Revised Curriculum (2015 개정 실과교과서의 로봇교육 체제 분석)

  • Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.99-106
    • /
    • 2020
  • In this paper, we analyzed the units related to robot education in the Practical Arts textbooks according to the 2015 revised curriculum. As a result, all textbooks had a common system of introduction, development, and organization, and all of them showed a similar flow. Learning objectives were presented in all textbooks, but no affective goals were presented except cognitive and functional goals. The contents of robot learning suggest the meaning and type of robots, the structure and sensors of robots, and the activities of making robots, but the contents of robot ethics, the production and activities of various robot works, and the use of robots in the problem solving process are not presented. The assembly robot and the infrared sensor are used in common, and it consists of presenting robot production and control training materials in experience activities and arranging units through evaluation, and the A, C, and F textbooks also provide the unit auxiliary data. In the future, it will be necessary to include the contents of robot ethics education centered on the design/manufacturer and user-oriented robot ethics such as the recognition of the limits of robots, the principles of using robots correctly, safety education, personal information and privacy protection.