Development of Quantification Methods for the Myocardial Blood Flow Using Ensemble Independent Component Analysis for Dynamic $H_2^{15}O$ PET

동적 $H_2^{15}O$ PET에서 앙상블 독립성분분석법을 이용한 심근 혈류 정량화 방법 개발

  • Lee, Byeong-Il (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Jae-Sung (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Dong-Soo (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kang, Won-Jun (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Jong-Jin (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Kim, Soo-Jin (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Choi, Seung-Jin (Department of Computer Science, Pohang University of Science and Technology) ;
  • Chung, June-Key (Department of Nuclear Medicine, Seoul National University College of Medicine) ;
  • Lee, Myung-Chul (Department of Nuclear Medicine, Seoul National University College of Medicine)
  • 이병일 (서울대학교의과대학 핵의학교실) ;
  • 이재성 (서울대학교의과대학 핵의학교실) ;
  • 이동수 (서울대학교의과대학 핵의학교실) ;
  • 강원준 (서울대학교의과대학 핵의학교실) ;
  • 이종진 (서울대학교의과대학 핵의학교실) ;
  • 김수진 (서울대학교의과대학 핵의학교실) ;
  • 최승진 (포항공대 컴퓨터공학과) ;
  • 정준기 (서울대학교의과대학 핵의학교실) ;
  • 이명철 (서울대학교의과대학 핵의학교실)
  • Published : 2004.12.31

Abstract

Purpose: factor analysis and independent component analysis (ICA) has been used for handling dynamic image sequences. Theoretical advantages of a newly suggested ICA method, ensemble ICA, leaded us to consider applying this method to the analysis of dynamic myocardial $H_2^{15}O$ PET data. In this study, we quantified patients' blood flow using the ensemble ICA method. Materials and Methods: Twenty subjects underwent $H_2^{15}O$ PET scans using ECAT EXACT 47 scanner and myocardial perfusion SPECT using Vertex scanner. After transmission scanning, dynamic emission scans were initiated simultaneously with the injection of $555{\sim}740$ MBq $H_2^{15}O$. Hidden independent components can be extracted from the observed mixed data (PET image) by means of ICA algorithms. Ensemble learning is a variational Bayesian method that provides an analytical approximation to the parameter posterior using a tractable distribution. Variational approximation forms a lower bound on the ensemble likelihood and the maximization of the lower bound is achieved through minimizing the Kullback-Leibler divergence between the true posterior and the variational posterior. In this study, posterior pdf was approximated by a rectified Gaussian distribution to incorporate non-negativity constraint, which is suitable to dynamic images in nuclear medicine. Blood flow was measured in 9 regions - apex, four areas in mid wall, and four areas in base wall. Myocardial perfusion SPECT score and angiography results were compared with the regional blood flow. Results: Major cardiac components were separated successfully by the ensemble ICA method and blood flow could be estimated in 15 among 20 patients. Mean myocardial blood flow was $1.2{\pm}0.40$ ml/min/g in rest, $1.85{\pm}1.12$ ml/min/g in stress state. Blood flow values obtained by an operator in two different occasion were highly correlated (r=0.99). In myocardium component image, the image contrast between left ventricle and myocardium was 1:2.7 in average. Perfusion reserve was significantly different between the regions with and without stenosis detected by the coronary angiography (P<0.01). In 66 segment with stenosis confirmed by angiography, the segments with reversible perfusion decrease in perfusion SPECT showed lower perfusion reserve values in $H_2^{15}O$ PET. Conclusions: Myocardial blood flow could be estimated using an ICA method with ensemble learning. We suggest that the ensemble ICA incorporating non-negative constraint is a feasible method to handle dynamic image sequence obtained by the nuclear medicine techniques.

목적: 요소분석법. 독립성분분석법 등이 PET을 이용하여 심근혈류를 비침습적으로 측정하기 위하여 사용되어 왔다. 이론적으로 뛰어나고 새로운 방법인 앙상블 독려성분분석법을 이용하여 $H_2^{15}O$ 동적 심근 PET데이터의 정량분석방법을 개발하였다. 이 연구에서 사용한 앙상블 독려성분분석법을 이용하여 환자의 혈류를 정량화 하였다. 대상 및 방법: 관동맥질환이 의심되어 관류 SPECT를 시행한 환자 20명을 대상으로 $H_2^{15}O$ 동적 심근 PET을 시행한 후 앙상블 독립성분분석법을 이용하여 심근 독립성분영상을 추출하였으며, 좌심실영역과 심근영역에 대한 영상대조도를 조사하였다. 앙상블 학습은 독립성분과 가중치 행렬에 대한 확률분포를 가정하고 베이지안 이론에 의해서 혼합자료에 대한 확률분포를 추정한다. 이렇게 추정한 혼합자료의 확률분포와 실제 분포간의 차이인 Kullback-Leibler 발산치가 최소가 되도록 독립성분과 가중치 행렬을 순차적으로 변화시켜가며 최종 해를 찾는 방식이다. 이 연구에서 사후확률분포는 동적 핵의학 영상에 적합한 비음성제약조건과 함께 수정된 가우시안 분포를 이용하여 최적화 하였다. 혈류량은 심첨부, 중벽 네 부분, 하벽 네 부분의 9개 영역으로 나누어 측정하였으며, 측정결과에 대해 관류 SPECT 소견과 관동맥조영술의 소견과 비교하였다. 결과: 전체 20명의 휴식기 및 부하기 영상에서 5명을 제외한 15명의 데이터에 대해 심근혈류를 측정할 수 있었다. $H_2^{15}O$ 동적 심근 PET에서 앙상블 독립성분분석법을 이용하여 정량화한 휴식기 혈류량은 $1.2{\pm}0.40$ ml/min/g, 부하기 혈류량은 $1.85{\pm}1.12$ml/min/g이었다. 같은 영역에 대해 두 번 측정했을 때 측정된 심근혈류값의 상관계수는 0.99로 재현성이 높았다. 분리된 독립성분영상에서 영상대조도는 좌심실에 대한 심근영역의 비는 평균 1:2.7이었다. 관동맥 조영술을 시행한 9명에서 협착이 없는 분절과 협착이 있는 분절의 혈류예비능에 유의한 차이가 있었다(P<0.01). 또한, 관동맥조영술에서 협착이 확인된 66분절의 심근관류 SPECT 소견에서 가역적 혈류감소를 보인 분절의 혈류예비능이 더 많이 감소되는 경향을 보였으나 통계적 유의성을 보이지는 않았다. 결론: 앙상블 학습을 이용한 독립성분분석방법을 이용하여 심근혈류가 측정이 되었다. 앙상블 독립성분분석법을 이용한 $H_2^{15}O$ 동적 심근 PET 분석방법이 관상동맥 질환의 분석 및 동적 핵의학 영상 데이터의 연구에 도움이 될 것으로 기대된다.

Keywords

References

  1. Ahn JY, Lee DS, Lee JS, Kim SK, Cheon GJ, Yeo JS, et al. Quantification of regional myocardial blood flow using dynamic $H_{2}^{15}O$ PET and factor analysis. J Nucl Med 2001;42:782-7
  2. Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim SK, Yeo JS, et al. Blind separation of cardiac components and extraction of input function from $H_{2}^{15}O$ dynamic myocardial PET using independent component analysis. J Nucl Med 2001;42:938-43
  3. Iida H, Tamura Y, Kitamura K, Bloomfield PM, Eberl S, and Ono Y. Histochemical correlates of $^{15}O$-waterperfusable tissue fraction in experimental canine studies of old myocardial infarction. J Nucl Med 2000;41:1737-45
  4. Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with $H_{2}^{15}O$ and dynamic positron-emission tomography strategy for quantification in relation to the partial volume effect. Circulation 1988;78:104-15 https://doi.org/10.1161/01.CIR.78.1.104
  5. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of thereproducibility of baseline and hyperemic myocardial blood flow measurements with $^{15}O$-labeled water and PET. J Nucl Med 1999;40:1848-56
  6. Schfers KP, Spinks TJ, Camici PG, Bloomfield PM, Rhodes CG, Law MP, et al. Absolute quantification of myocardial blood flow with $H_{2}^{15}O$ and 3-dimensional PET: an experimental validation. J Nucl Med 2002;43:1031-40
  7. Miskin JW, MacKay DJC. Application of ensemble learning to infra-red imaging. Proc 2nd Inter Workshop Independent Component Anal and Blind Signal Separation. 2000;399-404
  8. Lee JS, Lee DD, Choi S, Park KS, Lee DS. Non-negative matrix factorization of dynamic images in nuclear medicine. Proc IEEE Nucl Sci Symp Med Imag Conf. 2001
  9. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 401, 1999;788-91
  10. Lee JS, Park KS, Lee DS, Chung J-K, Lee MC. Development of IDL-based software for multimodal image registration. Korean J Nucl Med 2001;35:30(Abstract)
  11. Kim SK, Choi S, Lee BI, Hwang KH, Lee JS, Lee DS. Improved visualization of dynamic $H_{2}^{15}O$ PET data using NMF. Korean J Nucl Med 2002;36:53P (Abstract)
  12. Lee JS, Lee DS. Measurement of myocardial and cerebral blood flow using O-15 water. Korean J Nucl Med 2001;35:43-51P
  13. Hwang KH, Lee DS, Lee BI, Lee JS, Lee HY, Chung JK, et al. Evaluation of endothelium-dependent myocardial perfusion reserve in healthy smokers; cold pressor test using $H_{2}^{15}O$ PET. Korean J Nucl Med 2004;38(1)21-29
  14. Schaefer WM, Nowak B, Kaiser HJ, Koch KC, Block S, Dahl JV, et al. Comparison of microsphere-equivalent blood flow ($^{15}O$-water PET) and relative perfusion ($^{99m}$99m Tc-Tetrofosmin SPECT) in myocardium showing metabolism-perfusion mismatch. J Nucl Med 2003;44(1)33-9
  15. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovascular Research 2001;50:151-61 https://doi.org/10.1016/S0008-6363(01)00202-4
  16. Lee DS, Kang KW, Lee KH, Jeong JM, Kwark C, Chung J-K et al. Stress/Rest Tc-99m-MIBI SPECT in Comparison with Rest/Stress Rubidium-82 PET. Korean J Nucl Med 1995;29(1)31-40