• Title/Summary/Keyword: school bonding

Search Result 895, Processing Time 0.023 seconds

Effect of glass-infiltration treatments on the shear bond strength between zirconia and ultra low-fusing porcelain veneer (글라스 용융침투 처리가 지르코니아와 초저온 소성 도재와의 전단결합강도에 미치는 영향)

  • Yim, Eun-Kyung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.269-277
    • /
    • 2018
  • Purpose: This study examined the effects of glass infiltration treatments on the shear bond strength (SBS) between zirconia core and ultra low-fusing porcelain veneer. Materials and methods: The zirconia specimens were classified into 4 groups (n = 12): Untreated zirconia (group Z), zirconia coated ZirLiner (group ZL), glass-infiltrated zirconia (group ZG), glass-infiltrated and sandblasted zirconia (group ZGS). A cylinder of ultra low-fusing veneer porcelain was build up on each disk ($6mm{\times}3mm$). SBS was measured using a universal testing machine. Scanning electron microscope and Energy Dispersive X-ray spectroscopy were used to evaluate the surface of zirconia and failure pattern after SBS. Results: SBS value of group ZGS was significantly lower than that of other groups (P < .05). No significant differences were detected among group ZL, group Z and group ZG. Conclusion: Glass infiltration is not effective to the bond strength between zirconia and ultra low-fusing porcelain veneer. Sandblasting also dramatically decreased the bonding strength.

Synthesis and characterization of hydrophobic and hydrophilic cellulose derivative by esterification (친수성과 소수성을 동시에 가지는 아세틸화 셀룰로스 에테르의 합성 및 특성 평가)

  • Kim, Taehong;Lee, Sangku;Son, Byunghee;Paik, Hyun-Jjong;Yoon, Sanghyeon;Lee, Heesoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • Acetylated Cellulose Ether (ACE), cellulose-based amphiphilic polymer with hydrophilic and hydrophobic, was synthesized and investigated in terms of its solubility and wettability for organic solvents and water. Acetyl group was substituted to the cellulose ether in a hydrophilic polymer by esterification. As a result of FT-IR, the peak corresponding to the hydroxyl group decreased and carboxyl acid peak increased with increasing reaction time and temperature, which signified the increase in the degree of acetylation of the ACE. There were similar thermal decomposition behaviors before and after esterification reaction until $800^{\circ}C$ so that the reaction occurred without significant structural changes of cellulose backbones. The solubility parameter of the ACE had a range of 18.5~26.4, and its viscosity and turbidity were controlled according to the solubility parameter of organic solvents. The ACE showed the hydrophilicity because the contact angle of the ACE was higher than the cellulose ether. These results confirmed that the ACE had the hydrophobicity and hydrophilicity due to the ether which was glucosidic bonding between the glucose units and un-reacted hydroxyl functional groups in the ACE.

Effect of Aging treatment and Epoxy on Bonding Strength of Sn-58Bi solder and OSP-finished PCB (Sn-58Bi Solder와 OSP 표면 처리된 PCB의 접합강도에 미치는 시효처리와 에폭시의 영향)

  • Kim, Jungsoo;Myung, Woo-Ram;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.97-103
    • /
    • 2014
  • Among various lead-free solders, the Sn-58Bi solders have been considered as a highly promising lead-free solders because of its low melting temperature and high tensile strength. However, Sn-58Bi solder has the poor ductility. To enhance the mechanical property of Sn-58Bi solder, epoxy-enhanced Sn-58Bi solders have been studied. This study compared the microstructures and the mechanical properties of Sn-58Bi solder and Sn-58Bi epoxy solder with aging treatment. The solders ball were formed on the printed circuit board (PCB) with organic solderability preservative (OSP) surface finish, and then the joints were aged at 85, 95, 105 and $115^{\circ}C$ for up to 100, 300, 500 and 1000 hours. The shear test was conducted to evaluate the mechanical property of the solder joints. $Cu_6Sn_5$ intermetallic compound (IMC) layer grew with increasing aging time and temperature. The IMC layer for the Sn-58Bi epoxy solder was thicker than that for the Sn-58Bi solder. According to result of shear test, the shear strength of Sn-58Bi epoxy solder was higher than that of Sn-58Bi solder and the shear strength decreased with increasing aging time.

A Comparison of Instruction Effectiveness between the Experiment of Precipitation and the Experiment with Ball and Stick Model Related to 'Law of Definite Proportions' (일정성분비의 법칙에 관련된 앙금생성실험과 모형실험수업의 효과 비교)

  • Paik, Seoung-Hey;Kim, Hyeong-Sam;Han, Yu-Haw;Kim, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.3
    • /
    • pp.338-349
    • /
    • 2010
  • This study compared the instruction effectiveness between experiments of precipitation and a ball & stick model related to the 'Law of Definite Proportions' of 9th grade science in this study. The subjects were 250 students in the 9th grade. They were divided into two groups, an experimental group and a model group. The results showed that the ratio of thought in which the elements were divided in the solutions and the ratio of thought in which a new compound was created when the two solutions were mixed were higher in the precipitation experiment group than in the model group. The two groups were not different in terms of the ratio of thought related to the reason for the creation of the precipitate. The ratio of thought pertaining to incorrect answers was high, implying that the two strategies were not effective in correcting students' thoughts. However, the ratio of finding patterns from the measuring data in the model group was higher than in the experimental group. However, the ratios of 'definite proportions' inference in the bonding of the reactants were similar in the two groups. From these data, we concluded that the inference of the 'Law of definite proportion' from experiments or models was not suitable for middle school students.

Study of the Behavior of Concrete Slab Track on Earthwork According to the Variation of Train Axle Load and Speed (열차하중, 속도변화에 따른 토공상 콘크리트 슬래브궤도의 거동특성연구)

  • Chun, Hee-Kwang;Kang, Yun-Suk;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6788-6798
    • /
    • 2015
  • In recent high speed rail way, the operating speed of train is enhanced and the introduction of EMU train vehicles is increased. In addition, as expected the demand of the concrete slab track and the trend of design cross-section reduction, the clear behavior of evaluation of internal slab layer is demanded about the variation of design load and speed. The purpose of this study is to evaluate and identify the mechanical behavior pattern of concrete slab track and track-road bed with the variation of axle load and train speed. To this end, the behavior of TCL and HSB was evaluated in according to the variation of axle load and speed. And the analysis results and the data measured TCL strain sensor, which was embedded in TCL slab under installation on Honam high speed railway, was analyzed. The analysis result shows that the strain are increasing in according to the speed-up of train, and line regression was obtained from measured data. Analysis data of the state of bonding condition of slab layer and measured data was analyzed. It is conducted that the TCL layer stress of HEMU 430X, which of axle load, is lighter was similar to the stress of KTX-Honam, the standard deviation of measured stress is dramatically increased.

Investigation of Degradation Mechanism of High Alumina Refractory in a Coal Gasifier (석탄 가스화기에서의 고알루미나 내화물의 손상 기구 규명)

  • Kim, Yuna;Lee, Jae Goo;Oh, Myongsook S.
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.638-645
    • /
    • 2009
  • High alumina refractory used in a coal gasifier was analyzed and the degradation mechanism by molten slag was investigated. The depth of refractory severely damaged by slag varied between 12~40 mm, including the adhered slag layer. The sample also showed the cracks formed in parallel to the slag/refractory interface. The degree of degradation varied with the micro-structures in the refractory. Fused alumina grains showed the uneven boundary and pore formation just along the edges, while the tablet alumina showed the slag penetrated between sintered alumina around which the formation of Al-Fe phase was observed. Calcium aluminate cements were not observed at the high temperature zone near the slag/refractory interface, probably due to dissolution into molten slag. Around large grains of alumina, rod shape alumina, which appeared to be recrystallized during cooling, were observed, and large pores were also formed around those grains. Therefore, in high alumina refractories, hot molten slag dissolves the bonding phase and rod-shape alumina phase is recrystallized upon cooling. During this process, cracks are developed due to structural change, and the degradation occurs by physical causes such as structural spalling.

Effects of Anodic Voltages of Photcatalytic TiO2 and Doping in H2SO4 Solutions on the Photocatalytic Activity (광촉매 TiO2의 황산용액에서의 양극산화전압과 도핑이 광촉매 활성에 미치는 영향)

  • Lee, Seung-Hyun;Oh, Han-Jun;Chi, Choong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.8
    • /
    • pp.439-444
    • /
    • 2012
  • To compare the photocatalytic performances of titania for purification of waste water according to applied voltages and doping, $TiO_2$ films were prepared in a 1.0 M $H_2SO_4$ solution containing $NH_4F$ at different anodic voltages. Chemical bonding states of F-N-codoped $TiO_2$ were analyzed using surface X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the co-doped $TiO_2$ films was analyzed by the degradation of aniline blue solution. Nanotubes were formed with thicknesses of 200-300 nm for the films anodized at 30 V, but porous morphology was generated with pores of 1-2 ${\mu}m$ for the $TiO_2$ anodized at 180 V. The phenomenon of spark discharge was initiated at about 98 V due to the breakdown of the oxide films in both solutions. XPS analysis revealed the spectra of F1s at 684.3 eV and N1s at 399.8 eV for the $TiO_2$ anodized in the $H_2SO_4-NH_4F$ solution at 180 V, suggesting the incorporation of F and N species during anodization. Dye removal rates for the pure $TiO_2$ anodized at 30 V and 180 V were found to be 14.0% and 38.9%, respectively, in the photocatalytic degradation test of the aniline blue solution for 200 min irradiation; the rates for the F-N-codoped $TiO_2$ anodized at 30 V and 180 V were found to be 21.2% and 65.6%, respectively. From the results of diffuse reflectance absorption spectroscopy (DRS), it was found that the absorption edge of the F-N-codoped $TiO_2$ films shifted toward the visible light region up to 412 nm, indicating that the photocatalytic activity of $TiO_2$ is improved by appropriate doping of F and N by the addition of $NH_4F$.

Experimental Studies on Bond and Splice Performance of Splice Sleeve for Connecting Rebar (철근연결용 스플라이스 슬리브의 이음 및 부착성능에 대한 실험적 연구)

  • Kang, Duk Man;Park, Yong Gul;Lee, Hyeon Gi;Moon, Do Young
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.257-264
    • /
    • 2017
  • The PC (Precast Concrete) construction method is a technique where concrete members that have been produced in a plant are constructed on site. Thus, continuity and secure integration of a structure that can be obtained by connecting rebars at splicing joint for PC members are the main areas of concern for this method. To evaluate the splicing and bonding performance according to application of a splice sleeve for connecting rebar in this research study, the diameter of rebar, development length, grouting strength etc. were set as variables. The performance and stiffness of splicing according to the development length of grout strength were measured and evaluated. In addition, by conducting comparative analysis on each of the variables, the factors that affected the splice sleeve for connecting rebar were discussed. The results confirmed that the strength and stiffness of the splice sleeve for connecting rebar were significantly affected by the development length while the increase in performance according to grout strength was not as significant.

Interfacial Adhesion Energy of Ni-P Electroless-plating Contact for Buried Contact Silicon Solar Cell using 4-point Bending Test System (4점굽힘시험법을 이용한 함몰전극형 Si 태양전지의 무전해 Ni-P 전극 계면 접착력 평가)

  • Kim, Jeong-Kyu;Lee, Eun-Kyung;Kim, Mi-Sung;Lim, Jae-Hong;Lee, Kyu-Hwan;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In order to develop electroless-plated Nickel Phosphate (Ni-P) as a contact material for high efficient low-cost silicon solar cells, we evaluated the effect of ambient thermal annealing on the degradation behavior of interfacial adhesion energy between electroless-plated Ni-P and silicon solar cell wafers by applying 4-point bending test method. Measured interfacial adhesion energies decreased from 14.83 to 10.83 J/$m^2$ after annealing at 300 and $600^{\circ}C$, respectively. The X-ray photoelectron spectroscopy analysis suggested that the bonding interface was degraded by environmental residual oxygen, in which the oxidation inhibit the stable formation of Ni silicide phase between electroless-plated Ni-P and silicon interface.

Effect of Solder Structure on the In-situ Intermetallic Compounds growth Characteristics of Cu/Sn-3.5Ag Microbump (Cu/Sn-3.5Ag 미세범프 구조에 따른 실시간 금속간화합물 성장거동 분석)

  • Lee, Byeong-Rok;Park, Jong-Myeong;Ko, Young-Ki;Lee, Chang-Woo;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.45-51
    • /
    • 2013
  • Thermal annealing tests were performed in an in-situ scanning electron microscope chamber at $130^{\circ}C$, $150^{\circ}C$, and $170^{\circ}C$ in order to investigate the effects of solder structure on the growth kinetics of intermetallic compound (IMC) in Cu/Sn-3.5Ag microbump. Cu/Sn-3.5Ag($6{\mu}m$) microbump with spreading solder structure showed $Cu_6Sn_5$ and $Cu_3Sn$ phase growths and then IMC phase transition stages with increasing annealing time. By the way, Cu/Sn-3.5Ag($4{\mu}m$) microbump without solder spreading, remaining solder was transformed to $Cu_6Sn_5$ right after bonding and had only a phase transition of $Cu_6Sn_5$ to $Cu_3Sn$ during annealing. Measured activation energies for the growth of the $Cu_3Sn$ phase during the annealing were 0.80 and 0.71eV for Cu/Sn-3.5Ag($6{\mu}m$) and Cu/Sn-3.5Ag($4{\mu}m$), respectively.