DOI QR코드

DOI QR Code

Effect of Solder Structure on the In-situ Intermetallic Compounds growth Characteristics of Cu/Sn-3.5Ag Microbump

Cu/Sn-3.5Ag 미세범프 구조에 따른 실시간 금속간화합물 성장거동 분석

  • Lee, Byeong-Rok (School of Materials Science and Engineering, Andong National University) ;
  • Park, Jong-Myeong (NEPES Corporation) ;
  • Ko, Young-Ki (Micro-Joining Center, Korea Institute of Industrial Technology) ;
  • Lee, Chang-Woo (Micro-Joining Center, Korea Institute of Industrial Technology) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 이병록 (안동대학교 신소재공학부 청정에너지 소재기술 연구센터) ;
  • 박종명 (Nepes Corporation, R&D센터) ;
  • 고영기 (한국생산기술연구원 용접접합기술센터) ;
  • 이창우 (한국생산기술연구원 용접접합기술센터) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지 소재기술 연구센터)
  • Received : 2013.09.09
  • Accepted : 2013.09.26
  • Published : 2013.09.30

Abstract

Thermal annealing tests were performed in an in-situ scanning electron microscope chamber at $130^{\circ}C$, $150^{\circ}C$, and $170^{\circ}C$ in order to investigate the effects of solder structure on the growth kinetics of intermetallic compound (IMC) in Cu/Sn-3.5Ag microbump. Cu/Sn-3.5Ag($6{\mu}m$) microbump with spreading solder structure showed $Cu_6Sn_5$ and $Cu_3Sn$ phase growths and then IMC phase transition stages with increasing annealing time. By the way, Cu/Sn-3.5Ag($4{\mu}m$) microbump without solder spreading, remaining solder was transformed to $Cu_6Sn_5$ right after bonding and had only a phase transition of $Cu_6Sn_5$ to $Cu_3Sn$ during annealing. Measured activation energies for the growth of the $Cu_3Sn$ phase during the annealing were 0.80 and 0.71eV for Cu/Sn-3.5Ag($6{\mu}m$) and Cu/Sn-3.5Ag($4{\mu}m$), respectively.

3차원 적층 패키지를 위한 Cu/Sn-3.5Ag 미세범프의 솔더 구조에 따른 금속간화합물 성장거동을 분석하기 위해 솔더 두께가 각각 $6{\mu}m$, $4{\mu}m$인 서로 다른 구조의 미세범프를 $130^{\circ}C$, $150^{\circ}C$, $170^{\circ}C$ 조건에서 실시간 주사전자현미경을 이용하여 실시간 금속간화합물 성장 거동을 분석하였다. Cu/Sn-3.5Ag($6{\mu}m$) 미세범프의 경우, 많은 양의 솔더로 인해 접합 직후 솔더가 넓게 퍼진 형상을 나타내었고, 열처리 시간경과에 따라 $Cu_6Sn_5$$Cu_3Sn$금속간화합물이 성장한 후, 잔류 Sn 소모 시점 이후 $Cu_6Sn_5$$Cu_3Sn$으로 상전이 되는 구간이 존재하였다. 반면, Cu/Sn-3.5Ag($4{\mu}m$) 미세범프의 경우, 적은양의 솔더로 인해 접합 직후 솔더의 퍼짐 현상이 억제 되었고, 접합 직후 잔류 Sn상이 존재하지 않아서 금속간화합물 성장구간이 억제되고, 열처리 시간경과에 따라 $Cu_6Sn_5$$Cu_3Sn$으로 상전이 되는 구간만 존재하였다. 두 시편의 $Cu_3Sn$상의 활성화 에너지의 값은 Cu/Sn-3.5Ag($6{\mu}m$) 및 Cu/Sn-3.5Ag($4{\mu}m$) 미세범프가 각각 0.80eV, 0.71eV로 나타났고, 이러한 차이는 반응기구 구간의 차이에 따른 것으로 판단된다. 따라서, 솔더의 측면 퍼짐 보다는 접합 두께가 미세범프의 금속간화합물 반응 기구를 지배하는 것으로 판단된다.

Keywords

References

  1. J. S. Ha, J. P. Jung and T. S. Oh, "Effects of Intermetallic Compounds Formed during Flip Chip Process on the Interfacial Reactions and Bonding Characteristics", J. Microelectron. Packag. Soc., 19(2), 35 (2012). https://doi.org/10.6117/kmeps.2012.19.2.035
  2. S. C. Park, K. J. Min, K. H. Lee, Y. S. Jeong and Y. B. Park, "Effect of Annealing on the Interfacial Adhesion Energy between Electroless-Plated Ni and Polyimide", Met. Mater. Int., 17, 111 (2011). https://doi.org/10.1007/s12540-011-0215-z
  3. E. J. Jang, J. W. Kim, B. Kim, T. Matthias and Y. B. Park, "Annealing Temperature Effect on the Cu-Cu Bonding Energy for 3D-IC Integration", Met. Mater. Int., 17, 105 (2011). https://doi.org/10.1007/s12540-011-0214-0
  4. K. N. Chen, C. S. Tan, A. Fan and R. Reif, "Abnormal Contact Resistance Reduction of Bonded Copper Interconnects in Three-Dimensional Integration during Current Stressing", Appl. Phys. Lett., 86, 011903 (2005). https://doi.org/10.1063/1.1844609
  5. M. Murugesan, Y. Ohara, T. Fukushima, T. Tanaka and M. Koyanagi, "Low-Resistance Cu-Sn Electroplated-Evaporated Microbumps for 3D Chip Stacking", J. Electron. Mater., 41, 4 (2012).
  6. H. H. Kim, D. H. Kim, J. B. Kim, H. J. Kim, J. U. Ahn, I. S. Kang, J. K Lee, H. S. Ahn and S. D. Kim, "The Effects of UBM and SnAgCu Solder on Drop Impact Reliability of Wafer Level Package", J. Microelectron. Packag. Soc., 17(3), 65 (2010).
  7. B. H. Kwak, M. H. Jeong and Y. B. Park, "Effect of Intermetallic Compounds Growth Characteristics on the Shear Strength of Cu pillar/Sn-3.5Ag Microbump for a 3-D Stacked IC Package", Korean J. Met. Mater.,50(10), 775(2012).
  8. K. Sakuma, P. S. Andry, B. Dang, J. Maria, C. K. Tsang, C. Patel, S. L. Wright, B. Webb, E. Sprogis, S. K. Kang, R. Polastre, R. Horton and J. U. Knickerbocker, "3D Chip Stacking Technology with Low-Volume Lead-Free Interconnections", Proc. 57th Electronic Components and Technology Conference (ECTC), Reno, 627, IEEE CPMT/ECA/EIA(2007).
  9. Y. M. Kim, K. M. Harr and Y. H. Kim, "Mechanism of the Delayed Growth of Intermetallic Compound at the Interface between Sn-4.0Ag-0.5Cu and Cu-Zn Substrate", Electron. Mater. Lett., 6, 151 (2010). https://doi.org/10.3365/eml.2010.12.151
  10. B. H. Lee, J. Park, S. J. Jeon, K. W. Kwon and H. J. Lee, "A Study on the Bonding Process of Cu Bump/Sn/Cu Bump Bonding Structure for 3D Packaging Applications", J. Electrochem. Soc., 157, 4, (2010). https://doi.org/10.1149/1.3268426
  11. Y. S. Lai, Y. T. Chiu and J. Chen, "Electromigration Reliability and Morphologies of Cu Pillar Flip-Chip Solder Joints with Cu Substrate Pad Metallization", J. Elecron. Mater., 37, 1624 (2008). https://doi.org/10.1007/s11664-008-0515-3
  12. M. H. Jeong, J. W. Kim, B. H. Kwak and Y. B. Park, "Effects of Annealing and Current Stressing on the Intermetallic Compounds Growth Kinetics of Cu/Thin Sn/Cu Bump", Microelectron. Eng., 89, 50 (2012). https://doi.org/10.1016/j.mee.2011.04.025
  13. B. H. Kwak, M. H. Jeong and Y. B. Park, "Effects of Temperature and Current Stressing on the Intermetallic Compounds Growth Characteristics of Cu Pillar/Sn-3.5Ag Microbump", Jpn. J. Appl. Phys., 51, 05EE05 (2012). https://doi.org/10.7567/JJAP.51.05EE05
  14. D. R. Flanders, E. G. Jacobs and R. F. Pinizzotto, "Activation Energies of Intermetallic Growth of Sn-Ag Eutectic Solder on Copper Substrates", J. Electron. Mater., 26, 883 (1997). https://doi.org/10.1007/s11664-997-0268-4
  15. J. W. Yoon and S. B. Jung, "Effect of Isothermal Aging on Intermetallic Compound Layer Growth at the Interface between Sn-3.5Ag-0.75Cu Solder and Cu Substrate", J. Mater.Sci., 39, 4211 (2004). https://doi.org/10.1023/B:JMSC.0000033401.38785.73
  16. K. -N. Tu, Solder Joint Technology: Materials, Properties, and Reliability, pp.59-71, Springer, New York (2007).
  17. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd Ed., Chapman & Hall, London (1992).
  18. T. Laurila, V. Vuorinen and J. K. Kivilahti, "Interfacial Reactions between Lead-Free Solders and Common Base Materials", Mater.Sci. Eng., R 49, 1 (2005).
  19. M. H. Jeong, J. W. Kim, B. H. Kwak, B. J. Kim, G. W. Lee, J. D. Kim, Y. C. Joo and Y. B. Park, "Intermetallic Compound Growth Characteristics of Cu/Thin Sn/Cu Bump for 3-D Stacked IC Package", Kor. J. Met. Mater.,49(2), 180(2011). https://doi.org/10.3365/KJMM.2011.49.2.180
  20. G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo and Y. B. Park, "Temperature Effect on Intermetallic Compound Growth Kinetics of Cu Pillar/Sn Bumps", J. Electron. Mater., 38, 2228 (2009). https://doi.org/10.1007/s11664-009-0922-0
  21. C. Y. Liu, Lin Ke, Y. C. Chuang and S. J. Wang, "Study of Electromigration-Induced Cu Consumption in the Flip-Chip Sn/Cu Solder Bumps", J. Appl. Phys., 100, 083702 (2006). https://doi.org/10.1063/1.2357860