• 제목/요약/키워드: scheduling delay

검색결과 509건 처리시간 0.028초

Delay Performance of Multi-Service Network with Strict Priority Scheduling Scheme

  • Lee, Hoon
    • 한국통신학회논문지
    • /
    • 제30권2B호
    • /
    • pp.11-20
    • /
    • 2005
  • Strict priority scheduling scheme is a good candidate for the implementation of service differentiation in an Internet because of simplicity in implementation and the capability to guarantee the delay requirement of the highest class of traffic. However, it is also blown that strict priority starves the lower-class traffic at the cost of prioritizing the higher-class traffic. The purpose of this work is to propose an analytic method which can estimate the average delay performance of Diffserv service architecture and shows that strict priority scheme does not sacrifice the lower class traffic over a diverse condition of the load. From the numerical experiments for three-class Diffserv network we validate our argument that strict priority scheme may be applied to a service differentiation scheme for the future Internet.

Wireless Packet Scheduling Algorithm for OFDMA System Based on Time-Utility and Channel State

  • Ryu, Seung-Wan;Ryu, Byung-Han;Seo, Hyun-Hwa;Shin, Mu-Yong;Park, Sei-Kwon
    • ETRI Journal
    • /
    • 제27권6호
    • /
    • pp.777-787
    • /
    • 2005
  • In this paper, we propose an urgency- and efficiency-based wireless packet scheduling (UEPS) algorithm that is able to schedule real-time (RT) and non-real-time (NRT) traffics at the same time while supporting multiple users simultaneously at any given scheduling time instant. The UEPS algorithm is designed to support wireless downlink packet scheduling in an orthogonal frequency division multiple access (OFDMA) system, which is a strong candidate as a wireless access method for the next generation of wireless communications. The UEPS algorithm uses the time-utility function as a scheduling urgency factor and the relative status of the current channel to the average channel status as an efficiency indicator of radio resource usage. The design goal of the UEPS algorithm is to maximize throughput of NRT traffics while satisfying quality-of-service (QoS) requirements of RT traffics. The simulation study shows that the UEPS algorithm is able to give better throughput performance than existing wireless packet scheduling algorithms such as proportional fair (PF) and modified-largest weighted delay first (M-LWDF), while satisfying the QoS requirements of RT traffics such as average delay and packet loss rate under various traffic loads.

  • PDF

A Node Scheduling Algorithm in Duty-Cycled Wireless Sensor Networks

  • Thi, Nga Dao;Dasgupta, Rumpa;Yoon, Seokhoon
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.593-594
    • /
    • 2015
  • In wireless sensor networks (WSNs), due to the very low data rate, the sleeping schedule is usually used to save consumed energy and prolong the lifetime of nodes. However, duty-cycled approach can cause a high end-to-end (E2E) delay. In this paper, we study a node scheduling algorithm in WSNs such that E2E delay meets bounded delay with a given probability. We have applied the probability theory to spot the relationship between E2E delay and node interval. Simulation result illustrates that we can create the network to achieve given delay with prior probability and high energy use efficient as well.

  • PDF

Priority-based Scheduling Policy for OpenFlow Control Plane

  • Kasabai, Piyawad;Djemame, Karim;Puangpronpitag, Somnuk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.733-750
    • /
    • 2019
  • Software Defined Networking (SDN) is a new network paradigm, allowing administrators to manage networks through central controllers by separating control plane from data plane. So, one or more controllers must locate outside switches. However, this separation may cause delay problems between controllers and switches. In this paper, we therefore propose a Priority-based Scheduling policy for OpenFlow (PSO) to reduce the delay of some significant traffic. Our PSO is based on packet prioritization mechanisms in both OpenFlow switches and controllers. In addition, we have prototyped and experimented on PSO using a network simulator (ns-3). From the experimental results, PSO has demonstrated low delay for targeted traffic in the out-of-brand control network. The targeted traffic can acquire forwarding rules with lower delay under network congestion in control links (with normalized load > 0.8), comparing to traditional OpenFlow. Furthermore, PSO is helpful in the in-band control network to prioritize OpenFlow messages over data packets.

Throughput and Delay Optimal Scheduling in Cognitive Radio Networks under Interference Temperature Constraints

  • Gozupek, Didem;Alagoz, Fatih
    • Journal of Communications and Networks
    • /
    • 제11권2호
    • /
    • pp.148-156
    • /
    • 2009
  • The fixed spectrum assignment policy in today's wireless networks leads to inefficient spectrum usage. Cognitive radio network is a new communication paradigm that enables the unlicensed users to opportunistically use the spatio-temporally unoccupied portions of the spectrum, and hence realizing a dynamic spectrum access (DSA) methodology. Interference temperature model proposed by Federal Communications Commission (FCC) permits the unlicensed users to utilize the licensed frequencies simultaneously with the primary users provided that they adhere to the interference temperature constraints. In this paper, we formulate two NP-hard optimal scheduling methods that meet the interference temperature constraints for cognitive radio networks. The first one maximizes the network throughput, whereas the second one minimizes the scheduling delay. Furthermore, we also propose suboptimal schedulers with linear complexity, referred to as maximum frequency selection (MFS) and probabilistic frequency selection (PFS). We simulate the throughput and delay performance of the optimal as well as the suboptimal schedulers for varying number of cognitive nodes, number of primary neighbors for each cognitive node, and interference temperature limits for the frequencies. We also evaluate the performance of our proposed schedulers under both additive white gaussian noise (AWGN) channels and Gilbert-Elliot fading channels.

멀티미디어 트래픽에 대한 무선 환경에서의 순방향 패킷 스케줄링 알고리즘 (A Wireless Downlink Packet Scheduling Algorithm for Multimedia Traffic)

  • 김동회;류병한
    • 대한전자공학회논문지TC
    • /
    • 제39권12호
    • /
    • pp.539-546
    • /
    • 2002
  • 본 논문에서의 패킷 스케줄러는 무선 채널 환경에서 실시간 비디오 트래픽과 비실시간 인터넷 트래픽을 동시에 서비스한다. 그리고 실시간 트래픽에 대한 지연을 감소 시기키 위하여 누적카운터와 SIR값을 동시에 고려하는 새로운 패킷 스케줄링 알고리즘을 제안한다. 본 알고리즘에서는 실시간 트래픽을 비실시간 트래픽에 비하여 우선적으로 처리한다. 시뮬레이션 결과를 고찰할 때, 실시간 비디오 트래픽과 같이 지연성능에 민감한 서비스의 경우에는 AC(Accumulation Counter) 방식이 기존의 M-LWDF방식보다 더 적합한 알고리즘으로 관찰되었다. 본 논문에서는 HSDPA 시스템과 유사한 구조를 채택하여 시간 축으로는 프레임 주기를 가지며 동시에 코드 축으로는 OVSF 코드를 사용할 수 있는 구조를 채택하여 모의 실험을 수행하였다.

Analyzing the Impact of Buffer Capacity on Crosspoint-Queued Switch Performance

  • Chen, Guo;Zhao, Youjian;Pei, Dan;Sun, Yongqian
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.523-530
    • /
    • 2016
  • We use both theoretical analysis and simulations to study the impact of crosspoint-queued (CQ) buffer size on CQ switch throughput and delay performance under different traffic models, input loads, and scheduling algorithms. In this paper, we present the following. 1) We prove the stability of CQ switch using any work-conserving scheduling algorithm. 2) We present an exact closed-form formula for the CQ switch throughput and a non-closed-form but convergent formula for its delay using static non-work-conserving random scheduling algorithms with any given buffer size under independent Bernoulli traffic. 3) We show that the above results can serve as a conservative guide on deciding the required buffer size in pure CQ switches using work-conserving algorithms such as the random scheduling, under independent Bernoulli traffic. 4) Furthermore, our simulation results under real-trace traffic show that simple round-robin and random work-conserving algorithms can achieve quite good throughput and delay performance with a feasible crosspoint buffer size. Our work reveals the impact of buffer size on the CQ switch performance and provides a theoretical guide on designing the buffer size in pure CQ switch, which is an important step toward building ultra-high-speed switch fabrics.

지연 제약 조건을 고려한 새로운 ILP 스케줄링 알고리즘 (A New ILP Scheduling Algorithm that Consider Delay Constraint)

  • 김기복;인치호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.1213-1216
    • /
    • 2005
  • In this paper, we suggested the integer linear programming (ILP) models that went through constraint scheduling to simple cycle operation during the delay time. The delayed scheduling can determine a schedule with a near-optimal number of control steps for given fixed hardware constraints. In this paper, the resource-constrained problem is addressed, for the DFG optimization for multiprocessor design problem, formulating ILP solution available to provide optimal solution. The results show that the scheduling method is able to find good quality schedules in reasonable time.

  • PDF

ATM 스위치를 위한 대기행렬의 셀 스케쥴링 방식 제안 및 성능평가 (Performance Evaluation and Proposal of Cell Scheduling Method of Queue for the ATM Switch)

  • 안정희
    • 한국시뮬레이션학회논문지
    • /
    • 제8권1호
    • /
    • pp.51-61
    • /
    • 1999
  • A cell scheduling method of Queue for the ATM switch is proposed and simulated. In this paper, we present the cell scheduling method proper to the proposed queue and the improved queue with Queue Sharing(QS) structure for CBR, VBR, ABR traffic. The proposed QS structure minimizes the CLS(Cell Loss Ratio) of ABR traffic and decreases the CLR of bursty VBR traffic. Also we propose a cell scheduling method using VRR(Variable Round Robin) scheme proper to the high-speed(ATM) switch. The VRR scheme provides a fairness in terms of service chance for the queues in the ATM switch as well as QOS of their cell delay characteristic of CBR and VBR traffic, QOS of ABR CLR. The simulation results show the proposed method achieves excellent CLR and average cell delay performance for the various ATM traffic services in the Queue Sharing structure.

  • PDF

A Distributed Sequential Link Schedule Combined with Routing in Wireless Mesh Networks

  • Cha, Jae-Ryong;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.462-465
    • /
    • 2012
  • This letter proposes a new distributed scheduling scheme combined with routing to support the quality of service of real-time applications in wireless mesh networks. Next, this letter drives average end-to-end delay of the proposed scheduling scheme that sequentially schedules the slots on a path. Finally, this letter simulates the time division multiple access network for performance comparison. From the simulation results, when the average number of hops is 2.02, 2.66, 4.1, 4.75, and 6.3, the proposed sequential scheduling scheme reduces the average end-to-end delay by about 28%, 10%, 17%, 27%, and 30%, respectively, compared to the conventional random scheduling scheme.