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Abstract 

  
Software Defined Networking (SDN) is a new network paradigm, allowing administrators to 
manage networks through central controllers by separating control plane from data plane.  So, 
one or more controllers must locate outside switches. However, this separation may cause 
delay problems between controllers and switches. In this paper, we therefore propose a 
Priority-based Scheduling policy for OpenFlow (PSO) to reduce the delay of some significant 
traffic. Our PSO is based on packet prioritization mechanisms in both OpenFlow switches and 
controllers. In addition, we have prototyped and experimented on PSO using a network 
simulator (ns-3). From the experimental results, PSO has demonstrated low delay for targeted 
traffic in the out-of-brand control network. The targeted traffic can acquire forwarding rules 
with lower delay under network congestion in control links (with normalized load > 0.8), 
comparing to traditional OpenFlow. Furthermore, PSO is helpful in the in-band control 
network to prioritize OpenFlow messages over data packets. 
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1. Introduction 

Traditional IP networks are complex and very hard to manage [1]. Classical switching and 
routing devices on this traditional IP networks are inflexible to optimize. These devices 
integrate both data plane and control plane on the same hardware devices. So, the Software 
Defined Networking (SDN) architecture [2] has been proposed to separate and operate 
between data plane and control plane. In general, the data plane locates in switch hardware, 
whereas the control plane is software running on one or more servers, called ‘controller’. The 
data plane provides the simplest function of switches, i.e., forwarding packet according to a set 
of rules. The rules in the switch are managed by software at the controller. This SDN 
architecture is designed to provide various perspectives (such as manageability and flexibility) 
in the programmable networks that traditional network suffers from. So far, there have been 
several SDN-based solutions, such as SoftRouter [3], ForCES [4], and OpenFlow [5].  

OpenFlow has been widely deployed in various network products, and attracts several 
network industries [6]. The OpenFlow protocol defines control messages to handle a switch. 
The control messages may be sent on a separated network from the data traffic (called 
out-of-band control network), or may be sent on a shared network infrastructure with the data 
traffic (called in-band control network). Since SDN networks grow in scale and complexity, 
the control traffic may suffer from delay, resulting in network inefficiency [7]. Several 
solutions ([7]–[11]) have also been proposed to reduce the delay of the control traffic. 
However, some solutions support only a specific communication between the control and data 
planes (in-band or out-of-band control networks) [8], [9]. Some solution [7] has proposed an 
initial design to fix this problem, but with a rather high overhead for traffic tagging.  

Hence, this paper proposes a Priority-based Scheduling policy for OpenFlow (PSO) to fix 
the aforementioned problems. The purpose of PSO design is twofold: (1) to overcome the 
bandwidth competition between data traffic and control traffic for the in-band control network, 
(2) to provide high-priority packet-in messages, based on packet contents (such as real-time 
services) for both in-band and out-of-band control network. 

The remainders of this paper are organized as follows. Section 2 gives background 
reviews of SDN and OpenFlow switches. The motivation of this research is explained in 
Section 3, and our PSO design is described in Section 4. The evaluation of PSO is discussed in 
Section 5, and compared to related work in Section 6. Finally, Section 7 concludes this work. 

2. Background 

2.1 Software-Defined Networking (SDN) 

In general, network devices are vender-dependent and closed systems. They are inflexible to 
optimize for different levels of services. Several studies [3]–[5], [12] have therefore proposed 
to solve the problem by implementing data handling rules as software rather than embedding 
them into hardware. Software Defined Networking (SDN) is one of the most well-known 
solutions. It provides a new approach for network administrators to manage network 
functionality and provision. SDN focuses on the role of software in running networks through 
an abstraction of the data plane, and separating it from the control plane. This separation 
allows faster innovation cycles at both planes. SDN architecture consists of multiple planes, 
including Forwarding Plane (FP), Operational Plane (OP), Control Plane (CP), Management 
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Plane (MP), and Application Plane (AP). Further details of SDN layers and architecture can be 
found in RFC 7426 [13].  

2.2 OpenFlow 

OpenFlow is a well-known SDN implementation. An OpenFlow switch [5], [6], [14] forwards 
data packets according to a set of rules in flow tables. These rules are managed by a 
software-based controller at the control plane outside the switch. According to the OpenFlow 
specification [14], there are three main components of the OpenFlow switch: a secure channel, 
flow tables and an OpenFlow protocol. The secure channel (also known as open channel) is a 
software API to connect with the controller, allowing commands and packets to communicate 
between the controller and the switch. The flow tables are built inside the switch hardware 
using Ternary Content Addressable Memory (TCAM). They contain a list of flow entries, 
defining rules for forwarding/dropping/modifying packets. Each flow entry consists of 
match-field, counter and instruction. For each incoming packet, the packet header is compared 
to the match-field of each entry. If the packet header is matched with any flow entry, the 
switch then takes the action of the instructions in that flow entry. If the header of the packet is 
not matched with any flow entry, this event is called table-miss. The packet is then 
encapsulated into an OpenFlow packet-in message. After that, the switch sends the packet-in 
message to the controller via an SDN interface to request an action or a new flow entry that 
will be stored in the flow tables. The controller responds by sending an OpenFlow packet-out 
message, and maybe an OpenFlow flow-mod message back to define a proper flow-entry for 
the packet at the switch. Since the controller is software-based, so it can be dynamically 
programed to provide manageability.  

The OpenFlow protocol provides a standard for communication between controllers and 
switches by defining several types of control messages, such as symmetric messages, switch 
configuration messages, asynchronous messages, and controller command messages. For 
example, OFPT_PACKET_IN is one of asynchronous messages, describing packet-in 
messages. The details of OpenFlow protocol can be found in [14]. 

2.3 In-band Control Network vs. Out-of-band Control Network 

To communicate between control and data planes, there are two alternatives, namely in-band 
control network and out-of-band control network. For the out-of-band control network, control 
traffic (the OpenFlow control message) is sent on a separate network from data traffic. Yet, for 
the in-band control network, the control and data traffic share the same network link. From the 
literature, the out-of-band control network has been focused by several studies [15]. It is also 
used by B4 (Google Software Defined WAN) [16]. Its advantages are as follows: (1) high 
security can be provided for control messages; (2) high availability can be provided even if 
there are failures in some network devices. However, this out-of-band control network is 
expensive to build due to the separation of network link. Sharma et al.  [9], [10] have also 
suggested that the in-band control network is suitable for all types of topologies.  

2.4 Centralized Controller vs. Distributed Controller 
Centralized and distributed controllers are two alternatives for SDN controller placement. For 
the distributed controllers, inter-connection links among controllers [17] must be built. White 
and Zandy [18] have suggested that the distributed controllers are rather complex, and require 
heavy configuration to design, deploy, and manage. On the other hand, the centralized 
controller is much simpler. So, the centralized controller is more widely deployed comparing 
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to the distributed controllers. However, SDN can grow in scale. The number of the switches 
under the same centralized controller could then be increased. This inevitably causes the 
network congestion problem [7]. This work will focus on the centralized controller. 

2.5 Differentiated Services Code Point (DSCP) of DS field  
DiffServ [19] is a traffic control architecture, relying on the 8-bit Differentiated Services (DS) 
field (in place of the outdated Type of Service (ToS) field [20]) in the IP header. DS field 
consists of the first six bits for the Differentiated Services Code Point (DSCP) and the other 
two bits for Explicit Congestion Notification (ECN). Due to its six-bit length, DSCP can 
support up to 64 different classes of traffic. DiffServ routers then decide on per-hop basis how 
to forward packets based on their class. First three bits of DSCP indicates IP precedence. 
These bits are called Class Selector (CS), prioritizing traffic types by classes (CS0 – CS7, 
lowest to highest priorities respectively). In our design, DSCP is deployed to mark the traffic 
priorities. The OpenFlow switch is extended by implementing a queuing mechanism to 
classify traffic according to the DSCP values. Some classes may be reserved for the OpenFlow 
control traffic (further described in Section 4.2). 

3. Problems and Motivation  

Most of the manageability in SDN relates to decoupling of the control and data planes. In 
particular, the first packet of a new flow is sent by a switch to the controller to acquire a 
forwarding rule. This may increase network load, and make the control plane a potential 
bottleneck [21]. In addition, since the flow tables of switches are configured in real time by an 
external device, there is also the extra delay, introduced by the flow setup process.  

In the centralized controller environment, there may be several switches under the same 
controller, resulting in the bandwidth competition among OpenFlow control messages in the 
out-of-band control network. This competition could finally increase the transmission delay of 
data traffic. Without considering different data traffic types and prioritizing their control traffic 
properly, some delay sensitive services may finally fail.  Network inefficiencies may then 
occur in SDN. Hsiao et al. [22] has previously pointed out that SDN suffers from the 
transmission delay, and this transmission delay is a significant issue of transmission quality for 
network operators. 

Furthermore, the situation in the in-band control network would be even worse than the 
out-of-band control network. There is an extra competition between OpenFlow control 
messages and data packets. Without having higher priority, the OpenFlow control messages 
may be dropped. This should cause the failure of data traffic forwarding at the end.  

Hence, this paper proposes a Priority-based Scheduling Policy for OpenFlow (PSO).  The 
design of PSO is to give a higher priority for control traffic in the in-band control network. 
Furthermore, PSO provides different priorities for OpenFlow control messages, based on 
contents/services (data traffic types) for both in-band and out-of-band control networks.   
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4. Design 

4.1 PSO Modules 

 

  

Fig. 1. Traditional OpenFlow switch vs. OpenFlow switch with PSO  

Fig. 1a shows an architecture of traditional OpenFlow switches. Generally, an OpenFlow 
switch looks up all incoming packets from an IN_PORT queue to match with its flow tables. 
The incoming packets are then served at an OUT_PORT queue, by taking actions according to 
the rule in the matched flow entry. In general, queue management is FIFO (First In First Out) 
with a drop-tailed algorithm. All packets are treated equally. So far, there has been no special 
queuing functionality, proposed in OpenFlow protocol [9]. According to our PSO design 
(illustrated in Fig. 1b), PSO modules are embedded into both OpenFlow switches (PSO switch 
module) and controllers (PSO controller module) respectively. These modules provide a 
special queuing mechanism to automatically prioritize OpenFlow messages and data traffic. 

 

 

Fig. 2. SDN interfaces 

Instead of using FIFO, a PSO switch module provides a special queue management on 
SDN interfaces of the OpenFlow switch. For the out-of-band control network, the SDN 
interface (or SDN port) of an OpenFlow switch is a specific port of that switch, directly 
connecting to the OpenFlow controller [23]. As shown in Fig. 2a, port-1 of the OF-switch 1, 
port-1 of the OF-switch 2, and port-1 of OF-switch 3 are SDN interfaces. For the in-band 
control network, some specific ports on each switch are deployed to pass OpenFlow control 
messages to the controller. We also call them SDN interfaces. Some of these SDN interfaces 
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may directly connect to the controller, for example, port-1 of the OF-switch 1 (as shown in 
Fig. 2b). Otherwise, some SDN interfaces on the in-band control network may indirectly 
connect to the controller via the other switches. For example, port-2 of the OF-switch 1, port-2 
and 3 of the OF-switch 2, and port-2 of OF-switch 3 are SDN interfaces (as shown in Fig. 2b).  
As previously mentioned, these SDN interfaces in the in-band network could suffer some 
delay due to the competition between OpenFlow control messages and data packets 
transmitting over the same interface. Our PSO switch module is designed to mitigate this 
problem by providing special queue management on these interfaces to prioritize OpenFlow 
messages over data packets.  For out-of-brand control network, PSO can provide ability to 
assist some services (such as real-time applications or the services of high-priority users) to be 
processed with lower delay.   

At the controller, a PSO controller module will provide special queue management for all 
interfaces to prioritize OpenFlow messages.  

 

Fig. 3. The components of PSO modules 

Both PSO switch and controller modules consist of a traffic classifier, multiple queues, 
and a packet scheduler (as illustrated in Fig. 3). The traffic classifier differentiates packets by 
using a Policy Map Table (PMT). This PMT is built inside TCAM like flow tables. The 
multiple queues are internal queues for traffic with different priorities. The packet scheduler is 
a packet prioritization scheduling mechanism. The details of the prioritization will be further 
discussed in section 4.3. The PSO controller module is designed to follow the prioritization set 
by the PSO switch module.  It has a queuing mechanism corresponding to the PSO switch 
module.  

4.2 Traffic Classifier  

For any traffic arriving at an SDN interface, a traffic classifier will differentiate traffic 
according to a set of predefined rules in a Policy Map Table (PMT). The rules must be set by a 
network administrator at the controller. Otherwise, the traffic will be treated equally. The PMT 
will then be copied to all OpenFlow switches in the network using OFPT_SET_CONFIG, 
which is an OpenFlow control message for switch configuration. Each rule of PMT contains 
traffic type, match-fields, and an action (as shown in Fig. 4).  The traffic classifier will match 
the arriving traffic with traffic type and match fields, then follows the action of the matched 
record.  
 

traffic type  match-fields action 

Fig. 4. Policy Map Table (PMT) 
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Table 1. Traffic types 
traffic type no. traffic type description 

1 OpenFlow configuration messages, and  
OpenFlow symmetric messages 

2 OpenFlow packet-in message, 
OpenFlow packet-out messages, and 
other OpenFlow control command messages 

3 Other OpenFlow messages 
4 data packets 

 
traffic type is a field to specify different types of traffic, as shown in Table 1. In this paper, 

we predefine four traffic types that should be treated with different priorities accordingly. The 
first type includes OpenFlow configuration messages (e.g., OFPT_SET_CONFIG) and 
OpenFlow symmetric messages (e.g., OFPT_ECHO_REQUEST, OFPT_ECHO_REPLY). 
The second type includes OFPT_PACKET_IN, OFPT_PACKET_OUT messages and other 
control command messages. The third type includes other OpenFlow control messages, such 
as OFPT_TABLE_STATUS. Finally, the forth type includes data packets. In the in-band 
control network, the data packets may share the same link with OpenFlow control messages. 
So, we give OpenFlow control messages higher priorities than data packets. Among the 
OpenFlow control messages, we also give three different priorities as shown in the Table 1. 
OpenFlow configuration messages are given the highest priority to ensure that any 
configurations by network administrators work out on time. Packet-in messages 
(OFPT_PACKET_IN), packet-out messages (OFPT_PACKET_OUT) and other control 
command messages are given a higher priority than other OpenFlow control messages (such as 
OFPT_TABLE_STATUS) since they carry important instructions between the controller and 
the OpenFlow switches. The details of the types of OpenFlow control messages can be found 
from [14]. These predefined traffic types and priorities are also flexible, and may be specified 
differently by network administrators for different organizations.  

match-fields are the match-fields of flow tables, which details are given in the OpenFlow 
specification [14]. They contain several header fields to match against the header of data 
packets. The match fields can help specify application services (for example, protocol=TCP 
port=80 is specified “http” service).  

action contains an action defining how the traffic should be treated by the packet 
scheduler. action can be setting DSCP values, or setting output queue ID. The following 
examples show how PMT could be set to prioritize different traffic according to traffic types 
and services in both out-of-band and in-band control networks. 

 
Example 1: a PMT for an out-of-band control network to give a priority for a specific 

service is defined as follows. 

Rule #1: traffic_type=1, action=queue_id:0 
Rule #2: traffic_type=2, ip_proto=17, udp_dst=20000, action=queue_id:1  
Rule #3: traffic_type=2, action=queue_id:2 
Rule #4: traffic_type=3, action=queue_id:3 

From the Example 1, a PMT contains four rules as follows. Rule #1 is to set queue_id=0 
(the highest priority queue) for all OpenFlow configuration and symmetric messages. This is 
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to give the highest priority to configuration commands from network administrators. Rule #2 
is to set queue_id=1 (the second highest priority queue) for OpenFlow packet-in/packet-out 
messages of real-time services (UDP destination port=20000). Rule #3 is to set queue_id=2 
(the third highest priority queue) for OpenFlow packet-in/packet-out messages of other 
services. Rule #4 is to put all other OpenFlow messages into queue_id=3 (the lowest priority 
queue). In summary, example-1 differentiates traffic by looking at its traffic types, and its 
services (using match-fields), and put the different priority traffic into different queues. The 
packet scheduler of this case manages four internal queues using Priority Queue or min rate 
[14].  

This PMT helps give the higher priority to OpenFlow message to acquire forwarding rule 
of a specific service in comparison to other service, thus reducing the delay of acquiring 
forwarding rule.  

Example 2: a PMT for an in-band control network to give a priority to OpenFlow control 
messages in competing with data packets is defined as follows.  

Rule #1: traffic_type=1, action=dscp:CS7 
Rule #2: traffic_type=2, action=dscp:CS6 
Rule #3: traffic_type=3, action=dscp:CS5 
Rule #4: traffic_type=4, action=dscp:copy 

In this example, there are both OpenFlow control messages and data packets, competing 
on the same connection due to an in-band control network. Rule #1 will set DSCP header of 
packets to CS7 for all OpenFlow configuration and symmetric messages. This is to give the 
highest priority to configuration commands by network administrators. Rule #2 gives the 
second priority to OpenFlow packet-in/packet-out messages, and other OpenFlow control 
command messages, by setting their DSCP headers to CS6. Rule#3 gives the third priority to 
other OpenFlow messages, by setting their DSCP headers to CS5. Finally, Rule#4 gives the 
lowest priority to data packets, and keeps their DSCP values at the packet headers as the old 
values.  In this case, DSCP of the data packets may be previously set to give different 
priorities. These DSCP values of data packets should be defined less than CS5. In the other 
case, DSCP of the data packets may not be set; thus, all data packets are treated equally. These 
DSCP values of OpenFlow control messages and data packets will be then considered by a 
packet scheduler to schedule the traffic according to their priorities (such as using WFQ). This 
PMT helps give the higher priority to OpenFlow message in comparison to data packets, thus 
reducing the delay of OpenFlow messages. It also helps give different priorities to different 
OpenFlow message types according to their significances.  

Example 3: a PMT for an in-band control network to give a priority to OpenFlow control 
messages and a specific service is defined as follows. 

Rule #1: traffic_type=1, action=dscp:CS7 
Rule #2: traffic_type=2, ip_proto=17, udp_dst=20000, action=dscp:CS6 
Rule #3: traffic_type=2, action=dscp:CS5 
Rule #4: traffic_type=3, action=dscp:CS4 
Rule #5: traffic_type=4, action=dscp:copy 
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Example-3 demonstrates how PMT prioritizes traffic according to traffic types and 
services in an in-band control network. From the example, a PMT contains five rules in an 
in-band control network. Rule #1 is the same as the one given in the example-2. It gives the 
highest priority to configuration commands by network administrators by setting DSCP 
header of packets to CS7 for OpenFlow configuration and symmetric messages. Rule #2 gives 
the second priority to OpenFlow packet-in/packet-out messages of real-time services (UDP 
port 20000) by setting their DSCP header to CS6. Rule #3 gives the third priority to OpenFlow 
packet-in/packet-out message of other services by setting their DSCP header to CS5. Rule #4 
gives a lower priority (DSCP=CS4) than Rule #3 to other OpenFlow messages. The last rule 
(Rule #5) gives the lowest priority to data packets, and set their DSCP headers equal to the 
DSCP value inside the data packets.  In this case, DSCP of the data packets may be previously 
set to give different priorities. These DSCP values of data packets should be defined less than 
CS4. In the other case, DSCP of the data packets may not be set; thus, all data packets are 
treated equally. These DSCP values of OpenFlow messages and data packets will be then 
considered by a packet scheduler to schedule the traffic according to their priorities (such as 
using WFQ).  

4.3 Queue and Packet Scheduler 

Multiple queues and a packet scheduler are last two components of PSO modules. Instead of 
FIFO drop-tail queuing, PSO modules provide a queuing mechanism that can prioritize 
different traffic. Weighted Fair Queue (WFQ) or Priority Queues (PQ) or min rate or other 
suitable queues can be deployed for this purpose. The multiple queues are one or more internal 
queues, attached to a specific port (an SDN interface). These internal queues are defined by 
network administrators, to schedule out packets from the SDN interface.  

After passing through the traffic classifier, packets will be differentiated according to the 
rules in PMT.  After that, the DSCP values of the packets may be set (marked), or a queue ID 
may be specified. For the first case, the packet scheduler will schedule the packets according 
to the DSCP values and scheduling mechanisms (defined by the network administrator). For 
the second case, the packet scheduler will map the specified queue ID directly to a specific 
internal queue.  

For example, the traffic classifier may specify traffic priorities by marking DSCP values 
of the IP header. These DSCP values can provide up to 64 traffic categories without an 
extra-overhead. The traffic scheduler can then use WFQ to handle different traffic priorities. In 
the other way, the traffic classifier may specify queue ID, and the packet scheduler then uses 
PQ or min rate for different traffic types.  

DSCP is originally deployed for Quality of Service (QoS) issues. However, this work 
mainly focuses on mitigating the delay of higher priority traffic only, not covering all QoS 
parameters.  

4.4 Configuration of Policy Map Table  

In general, a controller can set or query configuration parameters in an OpenFlow switch using 
the OpenFlow configuration messages (OFPT_SET_CONFIG, OFPT_GET_CONFIG). 
In this paper, our PMT is defined by a network administrator at the controller, and distributed 
to OpenFlow switches using an OFPT_SET_CONFIG message during the connection setup.  
The controller and switches then have the same PMT for PSO switch controller modules. The 
configuration steps are as follows: 
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1) The administrator configures the controller paths for all switches.  
2) The administrator creates rules in PMT according to the organization policy at the 

controller. 
3) The controller sends and updates PMT to all switches by using OFPT_SET_CONFIG 

messages.  
4) The administrator can check the PMT of any switch by using OFPT_GET_CONFIG 

messages. 

5. Performance Evaluation 

The performance evaluation of our proposed PSO is conducted using the Network Simulation 
3 (ns-3) [24]. Chaves’s OpenFlow module version 1.3 for ns-3 [25] is also deployed in the 
simulation. So, our PSO modules are extended from this module to provide a special queue in 
control channel (SDN interface). All nodes (source and receiver nodes, cross traffic nodes) 
implement FIFO scheduling and drop-tail queuing. Each simulation is run 50 times using a 
different Random Number Generator (RNG) seeds to get the averaged results, quoted with 
error bars with respect to confidence intervals of 95%. 

 

5.1 Performance Metrics  

(1) Delay 

Delay is a crucial index of the operation efficiency of an SDN network, especially for real-time 
applications (such as Voice over IP). There have been several studies on delay in SDN, such as 
[7], [10], [11], [22], [26].  Delay measurement of our study is based on these previous studies.  
The details are described as follows. 

 

Fig. 5. Delay measurement  

As shown in Fig. 5, delay of data packet can be measured as the summation of 
transmission time (T1+T2+T3), and delay in each switch or each hop delay (D1+D2). T1 is a 
transmission time, counting the time from the source node to the switch S1. D1 is the hop delay, 
counting the time from switch S1 sending a packet-in message to the controller until switch S1 
receiving a packet-out message (i.e. acquiring forwarding rules). This includes processing time 
at both switch S1 and the controller, queuing delay at both switch S1 and the controller, and 
transmission time of the packet-in and packet-out messages. For the next hop, T2 is the 
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transmission time from switch S1 to switch S2. The controller can look at the network 
end-to-end while making instruction for the switches because it has full topology physical and 
logical views of the network. So, flow rules of switch S2 are known. These rules can be 
installed automatically [27]. So, the time to acquire forwarding rules will be excluded from D2.  
For this reason, D2 is obtained by summation of processing delay in the flow-tables (TCAM 
packet matching delay) and queuing delay in switch S2. Experimental results of this work will 
be evaluated in term of this delay. 

(2) Packet Loss  

Packet loss is defined as fraction of the total transmitted packets that did not receive at the 
receiver. In this work, packet loss is described as the percentage of packets lost with respect to 
packets sent. Packet loss is generally caused by network congestion. In SDN, packet loss in 
control links directly affect to data traffic. 

(3) Throughput  

Throughput is defined as the rate of successful packets delivered over a communication 
channel. Throughput is usually measured in bits per second (bps). In SDN, network congestion 
in control links can reduce the throughput of both control and data traffic.  

5.2 Network Scenarios 

 

Fig. 6. Network scenarios: a) an out-of-band control network, b) an in-band control network 

In the out-of-band control network scenario (as shown in Fig. 6a), we define a PMT as shown 
in the Example-1 (in section 4.2). The objective of this experiment is to test how the increased 
load on a control link (CL-1) impacts to data traffic, and to test the PSO in terms of throughput 
and delay of a specific data traffic (high priority traffic). Each link of data traffic has a capacity 
of 200 Mbps. Each link of control traffic has a capacity of 100 Mbps. A specific data traffic is 
set to 1000 Kbps, sent from source node to receiver node. To make the competition among 
OpenFlow messages, switch OF-1 has cross traffic. Cross-traffic nodes generate several data 
flows and send them via switch OF-1 to the sink node. In this case, switch OF-1 will generate 
OpenFlow packet-in messages (associated with the data flows), which increase a load on 
CL-1.  

Since the cross-traffic has increased, several OpenFlow packet-in messages are sent to the 
controller. In this case, the load on a control link (CL-1) (as shown in Fig. 6a), is then 
increased. Therefore, we define this load on CL-1 as Normalized Load (NL), and NL can be 
obtained as follows: 
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In the in-band control network scenario (as shown in Fig. 6b), we define a PMT as shown in 
the Example-2 (in section 4.2). The objective of this experiment is to test how the increased 
load on a shared-link (SL) impacts to control traffic, and to test if PSO can help mitigate the 
problems in the in-band control network. The purpose of our experiments in the in-band 
control network is only to simulate and evaluate the effects of PSO modules. Several 
mechanisms for the in-band control network (as further described in Section 5.4) are not in the 
scope of this paper. We have not intended to implement the complete mechanism of the 
in-band control network. SL has a limited capacity of 100 Mbps. Data and control traffic share 
the same network link (SL). OpenFlow messages in our experiments are set according to 
OpenFlow specification 1.3, including 105 bytes of OpenFlow Extensible Match fields. Each 
message is approximately 220 bytes including TCP/IP header.  From Fig. 6b, OpenFlow 
generator generates and sends OpenFlow messages via switch OF-1 and switch OF-2 to the 
controller. Cross-traffic nodes generate several data packets and send them via switch OF-1 to 
the sink node.  

Since the data packets has increased, the load on a SL (as shown in Fig. 6b), is then 
increased. Therefore, we also define this load on SL as Normalized Load (NL) as previously 
mentioned.  

5.3 Simulation Results 

(1) Out-of-band control network scenario 

Fig. 7a shows packet loss of OpenFlow packet-in and packet-out messages of high priority 
data traffic, comparing between OpenFlow with PSO and traditional OpenFlow. Fig. 7b shows 
the hop delay in switch OF-1 of high priority data traffic, comparing between OpenFlow with 
PSO and traditional OpenFlow. 

 Under a low and medium NL (NL ≤ 0.8) over CL-1, the results have shown low 
OpenFlow packet loss (0%) and low delay (2.2 ± 0.6 ms) of both OpenFlow with PSO and 
traditional OpenFlow. However, at a high load (NL > 0.8), the congestion cause a 
significantly high packet loss (5 ± 1.4 %) in traditional OpenFlow. In this case, as the load 
increases, a switch drops more OpenFlow packet-in messages. After dropping, a switch has to 
retransmit these messages after their timeouts. This finally increases hop delay in switch OF-1 
(83 ± 2.7 ms). Yet, even with a high load (NL > 0.8), OpenFlow with PSO provides a lower 
OpenFlow packet loss, and a lower hop delay (22 ± 2 ms) of switch OF-1, as shown in Fig. 7b.  

 

Fig. 7. OpenFlow packet of a high priority data traffic on a control link (CL-1): a) Packet loss, b) Delay 
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Fig. 8. Impact on a high priority data traffic on a control link (CL-1): a) Throughput, b) Delay 

Fig. 8 shows throughput and delay of a high priority data traffic by comparing between 
OpenFlow with PSO and traditional OpenFlow. In traditional OpenFlow, at a high load  
(NL > 0.8), some buffered high priority packets are then dropped after their timeouts because 
the OpenFlow control messages at CL-1 are dropped. So, the throughput is reduced to 887 ± 
52 Kbps, and the delay of a high priority data traffic is increased to 103 ± 5 ms. However, in 
the OpenFlow with PSO even at a high load (NL > 0.8), a higher throughput (992 ± 6 Kbps) of 
the real-time data traffic can be provided. The PSO can also provide a low delay (27.6 ± 2.8 
ms) in comparison to the traditional OpenFlow.  

So, our PSO can help the data flow with high priority acquire forwarding rules with lower 
delay under network congestion at the control link. In case of the congestion at the control link, 
traditional OpenFlow would cause a severe problem to the delay sensitive services, such as for 
Voice over IP. 

(2) In-band control network scenario 

 

Fig. 9. OpenFlow packet on a shared-link (SL): a) Packet loss, b) Delay 

Fig. 9a shows packet loss of OpenFlow messages, comparing between OpenFlow with PSO 
and traditional OpenFlow. Fig. 9b shows delay of the OpenFlow messages, comparing 
between OpenFlow with PSO and traditional OpenFlow. Under a low NL (NL ≤ 0.6) over SL, 
the results have shown low OpenFlow packet loss (0%) and low delay (3 ± 0.4 ms) of both 
OpenFlow with PSO and traditional OpenFlow. However, at a medium and high load (NL > 
0.6), the congestion between OpenFlow and data packets cause a significantly high packet loss 
(6.4 ± 1.5 %) in traditional OpenFlow. In this case, as the load increases, a switch drops more 
OpenFlow messages. After dropping, a switch has to retransmit these messages after their 
timeouts. This finally increases delay in acquiring forwarding rules (> 100 ms). Yet, even with 
a medium and high (NL > 0.6), OpenFlow with PSO provides a lower OpenFlow packet loss, 
and a lower delay (32 ± 4 ms), as shown in Fig. 9b. Hence, PSO is helpful in the in-band 
control network to prioritize OpenFlow messages over data packets. This prioritization helps 
mitigate the packet loss and delay for OpenFlow messages during network congestion. 
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5.4 Implementation Issues of In-band Control Network  

For the in-band control network, we have designed PSO to prioritize OpenFlow messages over 
data traffic. As previously shown in this paper, the PMT of PSO can be set to prioritize control 
traffic (OpenFlow messages) over data traffic. This prioritization helps overcome the 
bandwidth competition between control and data traffic during network congestion. However, 
OpenFlow mechanisms for in-band control network are still at their early stage. Our in-band 
simulation is merely focused on PSO implementation without completing the whole design of 
in-band related mechanisms. There are quite a few open-research issues to complete the design, 
such as bootstrapping mechanisms (to establish a communication path between switches and a 
controller), topology discovery mechanisms (to find the most suitable path from a switch to 
the controller), control path recovery mechanisms (to recover from the control path failure). 
Some studies (such as [9], [28]–[30]) have initially investigated on the issues but still unsolved. 
Therefore, we plan for the future work to study further on the aforementioned issues of the 
in-band control network, then extend our ns-3 modules to perform further experimental 
evaluation.  

5.5 The Analysis of PMT Overhead 

According to TCAM operations, the OpenFlow module in ns-3 [25] considers the concept of 
virtual TCAM to estimate the average flow table search time. To provide a more realistic delay, 
this module uses sophisticated search algorithms for packet matching such as binary tree. For 
our design, this algorithm is used for packet matching in the PMT. So, the following equation 
can be used to estimate the delay of flow tables after adding the delay of the PMT:  

 
 
where K is the time for a single TCAM operation; n is the number of entries on pipeline flow 
tables; and m is the number of rules in the PMT. 

 

 
Fig. 10. Flow matching delay 

For our PSO, the PMT adds some overhead in a switch. However, this overhead is 
applicable for all situations (of examples 1-3 in Section 4.2). For example, the maximum rule 
of these examples is five rules (m=5). According to Chavas [25], K is to set 20 µs. If flow 
tables have the minimum rule (n=1), the overhead of the flow tables plus PMT could be 
obtained:  20 ×  log2(1 × 5) ≈ 46 µs. Fig. 10 shows the values of TCAM delay for more 
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rules in PMT (including 64 rules), and more flow entries in the flow tables. The overall 
TCAM-delay overhead is acceptable (less than 0.3 ms). 

6. Related Work 

In this section, we discuss our work in comparison with other studies in the literature. First of 
all, the standard OpenFlow specification [14] provides only a simple queuing mechanism (i.e., 
FIFO) to manage the communication between controllers and switches. In in-band control 
network, an OpenFlow messages may compete with data packets, and finally causes 
transmission delay of data traffic in acquiring forwarding rules. In out-of-band control network, 
the OpenFlow control messages of delay-sensitive traffic cannot gain low delay in competing 
with the OpenFlow control messages of delay-tolerant traffic. A few studies [7]–[9]  have 
worked around this problem. They are discussed as follows. 

He et al. [8] have proposed to reduce a delay by redirecting unmatched packets to a proxy.  
However, using a proxy in SDN may suffer from network congestion if several switches 
connect to the same proxy. Russ et al. [18] have pointed that a scale and speed are major 
problems of single point connection (like a proxy). Therefore, adding proxy to solve latency 
problem may become unmanageable and unavailable. Furthermore, this work is only designed 
specifically for the out-of-band control network, and cannot be deployed for the in-band 
control network. Unlike this work, our PSO has been designed to support both out-of-band and 
in-band control networks. Also, our PSO requires no proxy. 

Sharma et al. [9] have proposed to serve traffic with different priorities only in the 
in-band control network by redirecting packets through Open vSwitch [31] queues that can 
separated control traffic for data traffic. Yet, this work has not designed to prioritize different 
types of control messages. The mechanism of this work also needs vendor specific options to 
handle queue priority. Moreover, this work is only designed for the in-band control network, 
and cannot be deployed for the out-of-band control network. 

Long et al. [7] have proposed to optimize OpenFlow protocol by appending a priority tag 
to the OpenFlow packet-in message, and adding the Priority-based Flow Rule Request 
Message Processing Mechanism (PFRRMPM) at the switches and controllers. Similar to ours, 
this work aims to help the data flow with delay sensitivity acquire the forwarding rule with 
shorter waiting latency, when there are excess flow rule request messages in the SDN. 
However, by adding priority tag to the OpenFlow packet-in messages, this work would 
significantly cause an overheard to the size of the control messages. In contrast, our work does 
not have such an overhead since it uses the existing DS field in the standard IP header of the 
control messages for priority marking.  In comparison to ours, this work aims to support both 
in-band and out-of-band control networks as same as our work. Yet, this work has no detail of 
how to classify different traffic priorities in their design. It is only an initial design, with no 
prototype. There has been no experiment and performance evaluation to test their design. Our 
work has proposed more details for prioritizing different traffic, and different types of 
OpenFlow messages. We have also implemented the prototype of our design. Furthermore, 
experiments and performance evaluations have been done to demonstrate the success of our 
design in the out-of-band control network. We also expect positive results in the in-band 
control network.  
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7. Conclusions and Future Work 

OpenFlow has been deployed to provide benefits of SDN network. However, extra delay is 
introduced by its flow setup process. From the literature review, this may cause some delay 
sensitive services to be failed. So, we proposed the PSO modules in both OpenFlow switches 
and controllers to solve the problem. These mechanisms could overcome the problem of 
competition among control traffic in the out-of-band control network. Therefore, our approach 
helped the delay-sensitive traffic to get forwarding in time. The experimental results in 
out-of-band control network had demonstrated the success of our design.  Our PSO design 
could also mitigate the competition between control and data traffics for in-band control 
network. The initial results of the in-band environment have demonstrated that OpenFlow 
with PSO could prioritize OpenFlow messages over data traffic. So, OpenFlow with PSO 
could gain lower packet loss and delay in comparison with the traditional OpenFlow.  For the 
future work, we plan to add more mechanisms to alleviate the other open-research problems in 
the in-band control network. The OpenFlow module for ns-3 will be extended, and then 
experimented further for the in-band environment. 
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