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Throughput and Delay Optimal Scheduling in Cognitive
Radio Networks under Interference Temperature

Constraints
Didem Gözüpek and Fatih Alagöz

Abstract: The fixed spectrum assignment policy in today’s wire-
less networks leads to inefficient spectrum usage. Cognitive radio
network is a new communication paradigm that enables the unli-
censed users to opportunistically use the spatio-temporally unoccu-
pied portions of the spectrum, and hence realizing a dynamic spec-
trum access (DSA) methodology. Interference temperature model
proposed by Federal Communications Commission (FCC) permits
the unlicensed users to utilize the licensed frequencies simultane-
ously with the primary users provided that they adhere to the in-
terference temperature constraints. In this paper, we formulate two
NP-hard optimal scheduling methods that meet the interference
temperature constraints for cognitive radio networks. The first one
maximizes the network throughput, whereas the second one mini-
mizes the scheduling delay. Furthermore, we also propose subop-
timal schedulers with linear complexity, referred to as maximum
frequency selection (MFS) and probabilistic frequency selection
(PFS). We simulate the throughput and delay performance of the
optimal as well as the suboptimal schedulers for varying number
of cognitive nodes, number of primary neighbors for each cognitive
node, and interference temperature limits for the frequencies. We
also evaluate the performance of our proposed schedulers under
both additive white gaussian noise (AWGN) channels and Gilbert-
Elliot fading channels.

Index Terms: Cognitive radio networks, interference temperature,
scheduling.

I. INTRODUCTION

Recent studies exhibit that spectrum is sparsely utilized in
some frequency bands, whereas it is overcrowded in other fre-
quency bands [1]. The escalating demand for the radio spectrum
driven by the continuous growth of wireless technologies and
services necessitates new methods to combat the acute short-
age of bandwidth by utilizing the spectrum more efficiently.
In this respect, dynamic spectrum access (DSA) methods that
enable the devices to opportunistically access the licensed fre-
quency bands have been proposed. Cognitive radios, which are
computationally intelligent devices that can sense their environ-
ment and adapt their communication parameters in accordance
with the network and user demands, are able to realize the DSA
methodology [2].
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A cognitive radio network consists of primary users (PUs) and
secondary users (SUs). The former is a licensed user and hence
has exclusive rights to access the radio spectrum, whereas the
latter is an unlicensed user that can opportunistically access the
temporarily unused licensed spectrum bands, provided that it va-
cates them as soon as a PU appears [3]. In the rest of this paper,
we use the terms cognitive users and SUs interchangeably.

Recently, Federal Communications Commission (FCC) has
proposed a new model, referred to as interference temperature
model [4], that enables true coexistence between licensed and
unlicensed users. In this model, SUs are permitted to simulta-
neously operate on the same frequencies as the PUs provided
that the interference perceived by the PUs is within predefined
acceptable limits, quantified by the interference temperature
threshold for that particular frequency.

In this paper, we formulate throughput and delay optimal
schedulers for cognitive radio networks under interference tem-
perature constraints. Furthermore, we also propose two subop-
timal schedulers, referred to as maximum frequency selection
(MFS) and probabilistic frequency selection (PFS). To the best
of our knowledge, ours is the first study on scheduling in cog-
nitive radio networks meeting the interference temperature con-
straints of the PUs.

The remainder of the paper is organized as follows: Section II
describes the related work, whereas Section III introduces the
background and problem formulation. Section IV provides the
throughput and delay optimal scheduling formulations, as well
as the proposed suboptimal schedulers. Section V discusses the
simulation results and finally Section VI concludes the paper.

II. RELATED WORK

The fundamental problems of scheduling schemes have been
extensively studied in conventional networks [5]–[8]. However,
the appearance of new concepts like cognitive radio brings this
topic into the focus of research again. Cognitive radio concept
introduces new challenges to the scheduling schemes, since the
varying channel availability due to coexistence with PUs re-
quires the cognitive users to determine when and on which chan-
nel they should tune to in order to exchange data with their
neighbors.

The authors in [9] propose an adaptive downlink packet
scheduling algorithm for cognitive radio networks. Their algo-
rithm encompasses QoS and spectrum variation awareness ca-
pability. Firstly, they calculate the priority values for the traffic
queues in accordance with a priority function with channel adap-
tive coefficient. Secondly, among the channels that have free
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time slots, they determine the best available channel and then
make the time slot allocation in the subsequent step. Since they
choose among the free channels, their scheme does not enable
true coexistence with the primary system introduced in [4].

The authors in [10] modify the existing scheduling schemes
in conventional wireless networks that maximize the system ca-
pacity, achieve fairness, and satisfy the delay constraints by in-
corporating interference mitigation to the primary system. Al-
though their approach attempts to reduce interference to the li-
censed users, they do not guarantee that the interference per-
ceived at the licensed users is within quantified acceptable
threshold levels.

The integer linear programming (ILP) formulation for the
MAC-layer scheduling introduced in [11] minimizes the sched-
ule length in multi-hop cognitive radio networks. They also pro-
pose a distributed heuristic to determine the channels and time
slots for the cognitive nodes. However, both in their optimiza-
tion formulation and the suboptimal heuristic, they do not con-
sider the interference to the PUs.

The list-coloring problem introduced in [12] is a general re-
source allocation issue but it can also be considered as a schedul-
ing problem by adding time indices to the variables in the opti-
mization procedure. Their formulated problem assigns different
frequencies to the cognitive users that are in the interference
range of each other. However, the interference to the primary
system is again avoided by using only the free channels of the
licensed users and hence, true coexistence introduced in [4] is
again not considered in [12].

The studies on interference temperature concept mainly re-
volve around methods that optimize various objectives such as
QoS, transmission power allocation or channel capacity subject
to the interference temperature constraints. For instance, the au-
thors in [13] provide an analysis of the achievable capacity by
the interference temperature model. They model the RF envi-
ronment and derive the probability distributions governing the
interference temperature.

The authors in [14] formulate a nonlinear social rate optimiza-
tion problem with QoS and interference temperature constraints.
Note that unlike our work, their problem does not consider the
frequencies that each SU will be using but only determines the
rate and transmission power of the users. Hence, unlike our
study, the work in [14] is not a scheduling issue that determines
the frequency and time slot allocation of the cognitive users.
Moreover, they only consider a single interference temperature
measurement point, whereas we satisfy the constraints in all the
measurement points in our work.

The work in [15] concentrates on the power control prob-
lem in cognitive radio networks under interference temperature
constraints. The authors firstly examine the power control prob-
lem without interference temperature constraints. Subsequently,
they reformulate the same problem by taking interference tem-
perature constraints into account and model it as a concave min-
imization problem with linear constraints.

The authors in [16] consider the interference temperature
model from a different perspective. Binary and transmitter cen-
tric constraints are often used in the literature, where a reuse
distance between pair-wise sets of transmitters are considered
and the reuse of a set of channels is prohibited within this reuse

distance. On the contrary, the work in [16] proposes non-binary
and receiver-centric constraints, where the aggregate interfer-
ence at the receiver is considered and multiple transmitters are
allowed to use the same set of channels as long as they satisfy
the interference temperature limit at the receiver.

The optimization problem formulated by the authors in [17]
considers interference constraints and channel heterogeneity,
which implies that different channels support different transmis-
sion ranges. Our work also has this channel heterogeneity fea-
ture since we model the maximum transmission power of dif-
ferent frequencies with respect to their interference temperature
characteristics. Different maximum transmit power values imply
different transmission ranges for the frequencies. However, our
work is different from [17] in numerous ways. Firstly, we focus
on an underlay model, where the SUs transmit at the same time
and frequency with the PUs while ensuring that the interference
that they impose on any PU does not increase the aggregate in-
terference perceived by that PU above the interference temper-
ature limit. In contrast, the authors in [17] focus on an over-
lay model, where the SUs opportunistically utilize the spatio-
temporally unoccupied portions of the spectrum without causing
any interference on the PUs. Secondly, they base their model on
an ad hoc cognitive radio network architecture, while we focus
on an infrastructure based cognitive radio network. Thirdly, they
consider only frequency domain channel assignment, whereas
we consider both frequency and time domain channel assign-
ment, i.e., our proposed model determines the assignment of
both time slots and frequencies to the SUs. Fourthly, the objec-
tive function in their model maximizes the total spectrum utiliza-
tion, whereas we maximize the total network throughput. Their
objective function tries to establish as many links between the
SUs as possible. In other words, all frequencies have the same
weight in their work, whereas there is a maximum rate constraint
for each frequency in our work. Fifthly, they use a simple linear
expression for the relation between the transmission range and
interference range, while we guarantee the reliable communica-
tion with the base station in our transmission range formulation
and consider the interference temperature constraints in the in-
terference range.

In this paper, we consider scheduling in cognitive radio net-
works under interference temperature constraints. We formulate
the problems of throughput maximization and delay minimiza-
tion as optimization problems. Our work differentiates itself by
incorporating the interference temperature constraint, which is
specific to cognitive radio networks, and hence making it dis-
tinct in principle from past works about scheduling in conven-
tional wireless networks [5]–[8]. Besides, none of the work in
the literature about scheduling in cognitive radio networks [9]–
[12], [17] considers interference temperature constraints. Sim-
ilarly, the research studies about interference temperature con-
straints [13]–[16] do not consider scheduling in terms of fre-
quency and time slot allocation to the cognitive users. To the
best of our knowledge, ours is the first work on scheduling in
cognitive radio networks under interference temperature con-
straints.

III. PROBLEM FORMULATION

Interference temperature is the temperature equivalent of the
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RF power available at a receiving antenna per unit of bandwidth.
It is formally defined as [18]:

IT (fc, B) =
PIF (fc, B)

kB
(1)

where IT (fc, B) is the interference temperature for channel c
with central frequency fc and bandwidth B, PIF (fc, B) is the
average interference power in Watts centered at frequency fc

and covering the bandwidth B in Hz, and k is Boltzmann’s con-
stant (1.38 × 10−23 J/K). Under this model, a channel is avail-
able at a cognitive node m if the transmission due to m does not
increase the interference temperature at any other primary node
in the interference range of m beyond a predefined threshold.
This constraint can be conveyed as [18]:

IT (fc, B) +
Lc

mnPm(fc, B)
kB

< IT th
c . (2)

In the above formulation, Lc
mn refers to the distance depen-

dent path loss in transmission from node m to n on channel
c, Pm(fc, B) is the transmission power of m, and IT th

c is the
interference temperature threshold for channel c. The threshold
values should be determined by the regulatory bodies for each
frequency band in a given geographic region.

We consider a time slotted IEEE 802.22 system, where the
cognitive devices are managed by the base station (BS) [19].
The scheduler resides at the BS and determines how many pack-
ets and with which frequency each cognitive user will transmit
in each time slot. If we denote the number of packets in the
buffer of SU i at the beginning of time slot t by xi,t, the number
of packets transmitted by user i in time slot t by ui,t, the fading
coefficient of the channel between user i and the BS in time slot
t by Ai,t, the frequency used by user i in time slot t by fi,t, the
vector of buffer states for a total number of N cognitive nodes
as xt = [x1,t, x2,t, · · ·, xN,t], the vector of transmitted pack-
ets as ut = [u1,t, u2,t, · · ·, uN,t], the vector of channel states
as At = [A1,t, A2,t, · · ·, AN,t], and the vector of transmission
frequencies as ft = [f1,t, f2,t, · · ·, fN,t], then the scheduler’s
mapping is α: [xt, At] → [ut, ft].

On the other hand, reliable communication can be guaranteed
by having the scheduler to choose the power level Pm(fc, B)
in time slot t such that the number of packets transmitted ui,t is
equal to the Shannon capacity function for a Gaussian channel
[20]. If the noise variance is σ2/|Ai,t|2 and the average power
is Pi,t, then,

ui,t = B
Ts

S
ln

(
1 +

|Ai,t|2Pi,t

σ2

)
(3)

where B is the bandwidth, S is the packet size and Ts is the time
slot length. For simplicity, we assume that S = BTs. Therefore,

Pi,t =
σ2(eui,t − 1)

|Ai,t|2
. (4)

In line with the above information, the scheduling problem that
maximizes the network throughput while satisfying the interfer-

ence temperature constraints can be formulated as follows:

max
ut,ft

E{
N∑

i=1

ui,t} (5)

s.t. PIF (fi, B) + Lfi

ij

σ2(eui,t − 1)
|Ai,t|2

< IT th
fi

kB; ∀jεΦi,∀iε{1, · · ·, N}, (6)

fi,t 6= fi′ ,t; ∀i, i
′
ε{1, · · ·, N}, i 6= i

′
, (7)

ui,t ≤ xi,t (8)

where PIF (fi, B) denotes the average sensed interference
power at frequency fi over bandwidth B, Lfi

ij is the distance
dependent path loss from node i to node j with frequency fi,
IT th

fi
is the interference temperature threshold for frequency fi,

Φi is the set of primary nodes in the interference range of cog-
nitive node i, N is the total number of cognitive nodes, and fi,t

is the frequency used by node i in time slot t. In the above for-
mulation, (5) maximizes the expected value of the total number
of packets transmitted by all the cognitive users, (6) satisfies
the interference temperature constraint, (7) ensures that at most
one cognitive user can transmit using a certain time slot and
frequency combination, and (8) represents the fact that a user
cannot transmit more than the number of packets in its buffer at
the beginning of the time slot.

How the cognitive nodes know the already existing interfer-
ence temperature in the neighboring primary nodes is an open
issue in [4]. Therefore, as in [18], we assume a specialized en-
vironment where cognitive radios can locate licensed signals
and measure the interference temperature. In other words, the
cognitive nodes learn about the interference perceived by their
neighboring primary nodes through their local spectrum sensing
observations, which we denote here by PIF (fi, B).

IV. PROPOSED SCHEDULERS

A. Throughput Optimal Scheduler

Our solution to the problem formulated in Section III consists
of two stages. In the first stage, every cognitive node i com-
putes the maximum number of packets that can be transmitted
for every frequency by solving the following problem for each
frequency fi:

D(fi) = min(C(fi, j)); ∀jεΦi (9)
s.t. IT th

fi
kB − PIF (fi, B) > 0 (10)

where C(fi, j) = ln
(
(IT th

fi
kB − PIF (fi, B)|Ai,t|2)/σ2Lfi

ij +
1
)
. In the above formulation, bD(fi)c equals the maximum

number of packets that can be transmitted by cognitive node i
using frequency fi while not violating the interference tempera-
ture constraints for all the primary nodes that are in the interfer-
ence range of node i. Afterwards, all the cognitive nodes send
their bD(fi)c values to the BS. We assume here that the cogni-
tive nodes have a priori knowledge about the number of primary
nodes in their interference range as well as the path loss values
to their neighbors. How the nodes acquire this information is
beyond the scope of this paper.
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In the second stage of the algorithm, the BS constructs a ma-
trix called U = [Uif ], where Uif is the maximum number of
packets that can be transmitted by user i using frequency f , and
hence being equal to the bD(fi)c value. The BS, then, executes
the following binary integer linear program:

max
( N∑

i=1

F∑
f=1

T∑
t=1

UifXift

T

)
(11)

s.t.
∑

f

∑
t

Xift ≥ 1; ∀iε{1, · · ·, N}, (12)

Xift + Xi′ft ≤ 1; ∀i, i
′
ε{1, · · ·, N}, i 6= i

′
,∀f,∀t (13)

where N is the total number of cognitive nodes, F is the total
number of frequencies, T is the total number of time slots, and
Xift is a binary variable such that Xift = 1 if user i transmits
with frequency f in time slot t, and 0 otherwise. In the above
formulation, (12) ensures that each cognitive user is assigned at
least one time slot, whereas (13) guarantees that at most one user
can transmit in a certain time slot and frequency pair, thereby
avoiding collisions among the secondary nodes. Consider the
case that a PU is in the interference range of two cognitive users.
Since the cognitive users determine their bD(fi)c values, and
consequently the Uif values by taking only their own transmis-
sions into account, having more than one cognitive user transmit
in the same frequency and time slot may increase the aggregate
interference perceived at the PU beyond the interference temper-
ature limit. Therefore, in addition to avoiding collisions among
the secondary nodes, (13) is also necessary to ensure that the
aggregate interference temperature at the PUs is within the pre-
determined limits. Besides, the schedule length T is the duration
of time in which the changes in the sensed interference values,
denoted by PIF (fi, B), as well as the path loss values to the
PUs in the interference range are small enough not to have any
impact on the Uif values. Note that because of the floor operator
in bD(fi)c, the schedule length T does not mandate PIF (fi, B)
and the path loss values to remain constant in that time period,
but only requires that the change in their values does not alter
Uif . The value of T , in general, depends on the characteristics of
the spectrum environment. For instance, a slowly varying spec-
trum environment like the TV broadcast bands utilized by an
IEEE 802.22 network allows T to have a fairly large value. In
the simulations of this paper, we set T = N because T = N
is sufficiently large to ensure the fulfillment of constraint (12),
which prescribes that at least one time slot is assigned to each
cognitive user.

Once the scheduler determines the Uif values, each node
i transmits min(xi,t, Uif ) number of packets in time slot t.
We consider traffic in which all flows are continuously back-
logged such that the achieved throughput is entirely related to
the scheduling process and channel conditions without any vari-
ation due to traffic fluctuation.

B. Delay Optimal Scheduler

The first stage of the scheduler that minimizes the schedul-
ing delay is the same as the throughput optimal scheduler. How-
ever, in the second stage the delay optimal scheduler implements

the following nonlinear binary integer program with linear con-
straints:

min

(∑
i

∑
f

∑
t

tUifXift∑
i

∑
f

∑
t

UifXift

)
(14)

s.t.
∑

i

∑
f

∑
t

UifXift > 0, (15)

∑
f

∑
t

Xift ≥ 1; ∀iε{1, · · ·, N}, (16)

Xift + Xi′ft ≤ 1; ∀i, i
′
ε{1, · · ·, N}, i 6= i

′
,∀f,∀t.

(17)

In the above formulation, when Xift = 1, each one of Uif

number of packets waits for t number of time slots, starting from
the beginning of the schedule. We use the term scheduling de-
lay to refer to the number of time slots that a packet has to wait
for until its determined transmission time comes, given that the
packet is scheduled for transmission in that particular schedule.
Therefore, the total scheduling delay of these Uif number of
packets is equal to tUif . Hence,

∑
i

∑
f

∑
t tUifXift denotes

the total scheduling delay experienced by all the transmitted
packets in the schedule. Because the total number of transmit-
ted packets equals

∑
i

∑
f

∑
t UifXift, the objective function

in (14) minimizes the scheduling delay in terms of time slots ex-
perienced per packet. Moreover, (15) is necessary to avoid the
situation that the scheduler always selects the frequencies with
which the nodes can send at most zero packets for the sake of
reducing the average delay. Without (15), the scheduler can ar-
rive at the irrational decision of having none of the nodes being
able to transmit any packets, which would result in zero through-
put. The two optimization problems starting with (11) and (14)
are binary integer programming problems, which are known to
be NP-hard and can be solved via branch-and-bound algorithms
[21], [22].

C. Maximum Frequency Selection (MFS) Suboptimal Scheduler

In the first stage of the MFS scheduler, each cognitive node
i sends the frequency with which it wishes to transmit to the
BS. The nodes make their selection by finding maxfi D(fi). In
the second stage, the BS makes the time slot assignments by
first grouping the nodes with respect to the frequencies that they
wish to transmit with. Among the cognitive nodes in the same
frequency group, the BS assigns the node with the maximum
number of packets to the first time slot, the second maximum to
the second time slot etc. This way, the condition that at most one
cognitive node can be assigned a certain time slot and frequency
combination is ensured. Furthermore, the scheduling delay is
also reduced by doing the time slot assignment in the decreasing
order of their allowable number of packets to transmit.

D. Probabilistic Frequency Selection (PFS) Suboptimal Sched-
uler

As in the MFS scheduler, in the first stage each node sends the
frequency with which it wishes to transmit to the BS. However,



152 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 11, NO. 2, APRIL 2009

the selection of the desired frequency is made probabilistically
as follows: A cognitive node i chooses frequency fi with proba-
bility pfi = bD(fi)c/

∑
fi
bD(fi)c. In order to reduce the aver-

age delay, if frequency fi was selected in the previous schedule
and node i waited for Tfi time slots with a schedule length of
T , then as a penalty metric pfi is updated as pfi(1 − Tfi/T ).
The selection probability of the frequency that has the highest
number of packets among the remaining ones is increased by
pfi

Tfi
/T , which makes the total probability equal to 1. The sec-

ond stage of the PFS scheduler is the same as MFS.
In order to better comprehend the different behavior of MFS

and PFS schedulers, suppose that there are three SUs and three
frequencies in the network. Assume that maxfi D(fi) = f3

for all the three nodes and bD(fi)c = 22, 21, 20 for node 1, 2,
and 3, respectively. Thus, MFS scheduler selects node 1 for the
first time slot, node 2 for the second time slot and node 3 for
the third time slot. Assume that node 3 can transmit 19 and 18
packets with the other frequencies f1 and f2. Note that node
3 could have used f1 and f2 in the first and second time slots,
while other nodes used f3. This would decrease the schedul-
ing delay for node 3 because the packets would wait for less
number of time slots by being able to transmit earlier. Never-
theless, MFS scheduler does not allow this frequency and time
slot usage pattern by always selecting maxfi D(fi). In con-
trast, PFS scheduler probabilistically allows node 3 to select
frequencies f1 or f2 as the frequency that it wishes to trans-
mit with, hence enabling node 3 to transmit in earlier time slots.
This way, PFS scheduler disperses the selected frequencies and
avoids the above situation, which could occur with MFS sched-
uler. Because of this behavior of the PFS scheduler in addi-
tion to the penalty metric that it introduces, we intuitively ex-
pect PFS scheduler to have less scheduling delay on the aver-
age. Nevertheless, since PFS scheduler probabilistically allows
the selection of frequencies whose maximum number of pack-
ets for transmission is smaller, we intuitively expect the average
throughput of PFS scheduler to be smaller than the throughput
of MFS scheduler.

E. Computational Complexity Comparison

If the number of frequencies is F and each cognitive node
has M primary neighbors in its interference range, the first
stage of all the schedulers requires MF computations at each
node. Since M and F are fixed in our case, the computational
complexity of the first stage is O(1). Since the optimal sched-
ulers have binary integer programming models, they are NP-
hard problems. On the other hand, there is one value for the
maximum allowable number of packets to transmit correspond-
ing to a certain frequency for each secondary node in the sub-
optimal schedulers. Since the number of cognitive nodes is N ,
the computational complexity of the suboptimal schedulers is
O(N).

V. NUMERICAL EVALUATION

We simulated the suboptimal schedulers using OPNET Mod-
eler 14.0 [23]. While the first stage of the optimal schedulers
were also simulated and the Uif values were obtained in OP-

Fig. 1. Average network throughput for the proposed scheduling sche-
mes with varying number of cognitive nodes.

NET, the optimization procedures in the second stages were
implemented using CPLEX [24]. Firstly, we consider AWGN
channels, i.e., |Ai,t| = 1,∀i and ∀t. Secondly, we evaluate
the performance of our proposed schedulers under Gilbert-Elliot
fading channel model. The bandwidth is B = 10 MHz and
the noise variance is σ2 = 10−10. The PU activity is modeled
such that the initially sensed interference for each frequency fi

is uniformly distributed in [0, 2IT th
fi

kB/σ2]. If the sensed in-
terference at the beginning of a certain schedule is PIF (fi, B),
then the sensed interference in the next schedule is uniformly
distributed in [PIF (fi, B)− δ, PIF (fi, B)+ δ], where δ was se-
lected to be 0.65 mW. Besides, path loss of the cognitive nodes
to each primary neighbor is uniformly distributed between 0 and
1. The average values in all of the results were obtained using
10 different seeds and 10000 schedules for each seed.

In the first set of simulations, each cognitive node has three
primary neighbors in its interference range. The channel be-
tween the SUs and the BS is AWGN channel. There are three
frequencies with interference temperature thresholds of 1000 K,
2000 K, and 3000 K.

Figs. 1 and 2 illustrate the average network throughput and
average scheduling delay values where the number of cogni-
tive nodes varies between 5 and 40. For all the three schemes,
the throughput values remain almost invariant as the number of
secondary nodes increases, whereas the average scheduling de-
lay increases almost linearly. Furthermore, PFS scheduler has a
slightly less average scheduling delay than MFS at the expense
of a little decrease in average network throughput compared to
MFS. This improvement in delay is due to the penalty metric in-
troduced in PFS in order to decrease the scheduling delay. Note
here that because of the scale of the graph, the difference be-
tween the throughput values of MFS and PFS schedulers for 15
and 30 nodes is not visible. The actual average network through-
put values for 30 nodes are 16.51 packets/time-slot for MFS and
16.47 packets/time-slot for PFS. Similarly, the average through-
put for 15 nodes is 16.07 packets/time-slot for MFS and 15.97
packets/time-slot for PFS.

In the second set of simulations, again there are three fre-
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Fig. 2. Average scheduling delay for the proposed scheduling schemes
with varying number of cognitive nodes.

quencies with interference temperature thresholds of 1000 K,
2000 K, and 3000 K, and the channel between the SUs and the
BS is AWGN channel. However, this time we vary the number
of primary neighbors of each cognitive node while keeping the
total number of cognitive nodes constant. Figs. 3 and 4 illustrate
the average network throughput and average scheduling delay
for 15 cognitive nodes with varying number of primary neigh-
bors for each node. For all the scheduling schemes, through-
put decreases as the number of primary neighbors for each sec-
ondary node increases. However, the rate of decrease diminishes
as the number of primary neighbors increases. The reason for
this is that the cognitive nodes have more interference temper-
ature constraints as the number of their primary neighbors in-
creases. Therefore, their bD(fi)c values and consequently [Uif ]
values decrease and hence the average network throughput di-
minishes. Fig. 4 illustrates that the average scheduling delay
decreases as the number of primary neighbors for each cogni-
tive node increases and the rate of decrease diminishes as the
number of primary neighbors increases. This behavior in aver-
age scheduling delay is in line with the throughput performance
results of Fig. 3.

In the third set of simulations, we again model the channel be-
tween the SUs and the BS as an AWGN channel. We vary the in-
terference temperature limits of the frequencies, while keeping
the total number of cognitive nodes and the number of primary
neighbors of each cognitive node constant. Fig. 5 illustrates the
average network throughput for 15 cognitive nodes, each hav-
ing 3 primary neighbors in its interference range, with increas-
ing values of interference temperature limit. In this figure, the
values on the x-axis correspond to the interference temperature
limit for the first frequency. That is to say, if the value on the x-
axis is A K, then the limits for the second and third frequencies
are A + 1000 K and A + 2000 K, respectively. This figure in-
dicates that the network throughput increases as the interference
temperature limit increases. The results in Fig. 6 are essentially
the same as the ones in Fig. 5 with the only difference that we
do not show the results of the throughput optimal scheduler in
Fig. 6 in order to provide a better visualization of the through-

Fig. 3. Average network throughput for the proposed scheduling sche-
mes with varying number of primary neighbors for the cognitive
nodes.

Fig. 4. Average scheduling delay for the proposed scheduling schemes
with varying number of primary neighbors for the cognitive nodes.

put increase in the MFS and PFS schedulers as the interference
temperature limit increases. This increase in average network
throughput is due to the fact that the bD(fi)c values and conse-
quently the [Uif ] values of the cognitive nodes increase as the in-
terference temperature limits increase because increasing the in-
terference temperature limit represents the FCC allowing more
interference from unlicensed devices. Furthermore, the rate of
increase decreases for the optimum scheduler as the interference
temperature limit increases. The observed decrease in the rate of
increase is consistent with the results in [25], where the network
capacity saturates at a certain level after an initial increase as the
interference temperature limit increases.

Fig. 7 shows the average scheduling delay of 15 cognitive
nodes, again each having 3 primary neighbors in its interfer-
ence range, for increasing values of interference temperature
limit. This figure illustrates that the average scheduling delay
increases as the interference temperature limit increases. Fig. 8
better illustrates the increase in MFS and PFS schedulers. Sim-
ilar to the situation between Figs. 5 and 6, the only difference
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Fig. 5. Average network throughput for the proposed scheduling sche-
mes with varying values of interference temperature limit.

Fig. 6. Average network throughput for the proposed scheduling sche-
mes with varying values of interference temperature limit.

between Figs. 7 and 8 is that we do not show the performance re-
sults of the delay optimal scheduler in Fig. 8 in order to provide
a better visualization of the increase in the average scheduling
delay as the interference temperature limit increases. Moreover,
the results also indicate that the average scheduling delay val-
ues of the optimal as well as the MFS scheduler stabilize around
7000 K. This increase in average scheduling delay is consistent
with the increase in average network throughput as the interfer-
ence temperature limit increases.

The fourth set of simulations investigate the impact of chan-
nel fading on the performance of our proposed schedulers. We
model the fading process as a Gilbert-Elliot channel, which we
illustrated as a 2-state Markov process in Fig. 9. The fading co-
efficient is high when the channel is in the good state, whereas
it is low in the bad state. We have chosen the state transition
probabilities as 0.1, which is a small number compared to 0.9,
the probability of staying in the same state. We have made this
selection in order to reflect the slow fading channel process. The
rest of the simulation conditions is the same as the ones in the

Fig. 7. Average scheduling delay for the proposed scheduling schemes
with varying values of interference temperature limit.

Fig. 8. Average scheduling delay for the proposed scheduling schemes
with varying values of interference temperature limit.

Fig. 9. Gilbert-Elliot channel model.

first set of simulations, where we evaluated the AWGN chan-
nels.

Fig. 10 illustrates the average network throughput with Gilbe-
rt-Elliot channel as the number of cognitive nodes increases
from 5 to 40 for all the three schedulers. To facilitate the vi-
sual comparison with the AWGN channel performance, we have
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Fig. 10. Average network throughput for the proposed scheduling sche-
mes with Gilbert-Elliot channel.

Fig. 11. Average scheduling delay for the proposed scheduling schemes
with Gilbert-Elliot channel.

also shown in Fig. 10 the performance results previously dis-
played in Fig. 1. In line with the theoretical expectations, the
average network throughput decreases as the fading conditions
in the channel deteriorate. Hence, Gilbert-Elliot channel for all
the three schedulers yields reduced average network throughput
when compared to their AWGN channel counterparts.

Fig. 11 shows the average scheduling delay with Gilbert-
Elliot channel as the number of cognitive nodes increases from
5 to 40 for all the three schedulers. For better visual comparison
with the AWGN channel performance, we have also shown here
the performance results previously illustrated in Fig. 2. The rea-
son that the average scheduling delay of the Gilbert-Elliot chan-
nel is less than the AWGN channel for all the three schedulers
is that the bD(fi)c values and consequently the [Uif ] values de-
crease as the fading condition of the channel deteriorates. The
reasoning here is the same as the one where we varied the num-
ber of PUs in the interference range of each SU: The decrease
in [Uif ] values leads to reduced average scheduling delay due to
the formulation in (14). As in the preceding simulation results,

the decrease in the average scheduling delay is consistent with
the decrease in the average network throughput.

To put it in a nutshell, the average network throughput of the
MFS scheduler is slightly higher than that of the PFS scheduler
in all the simulation results. Furthermore, the average schedul-
ing delay of the PFS scheduler is slightly lower than that of
the MFS scheduler in all the results. These two observations
are consistent with our theoretical expectations, which we out-
lined in Section IV-D. On the one hand, the reason for the supe-
rior throughput performance of the MFS scheduler is that MFS
scheduler always selects the channel with the maximum allow-
able number of packets to transmit per time slot, whereas the
PFS scheduler may select the channel with reduced allowable
number of packets to transmit per time slot owing to its proba-
bilistic selection of the channels. On the other hand, the delay
performance of the PFS scheduler is better than that of MFS
scheduler due to the penalty metric introduced in the design of
PFS. Besides, the throughput and delay performance of the op-
timal schedulers are significantly better than that of suboptimal
schedulers. As a research challenge, the simulation results indi-
cate that better performing, yet computationally efficient subop-
timal schedulers are needed.

VI. CONCLUSION

In this paper, we propose throughput and delay optimal sched-
ulers with exponential complexity as well as suboptimal sched-
ulers with linear complexity for cognitive radio networks un-
der interference temperature constraints. We have simulated the
throughput and delay performance of the optimal schedulers as
well as the suboptimal schedulers for varying number of nodes,
number of primary neighbors for each cognitive node, and in-
terference temperature limits. Moreover, we have investigated
the impact of channel fading on the performance of our pro-
posed schedulers by providing comparative simulation results
for both AWGN and Gilbert-Elliot fading channels. While the
performance results of the optimal schedulers serve as a base-
line, the suboptimal schedulers have significantly less compu-
tational complexity at the expense of reduced throughput and
increased delay performance.

Although the computational simplicity of the suboptimal
schedulers makes them attractive, better performing suboptimal
schedulers might be needed. Therefore, as a future work, we are
planning to design suboptimal schedulers whose performance
is closer to the optimal schedulers. We envision that the bi-
nary variables Xift, whose values are to be determined by the
scheduling algorithm, can be easily encoded to a binary string,
and this property can make genetic algorithms (GA) [26] suit-
able for implementation. Hence, we are planing to design GA-
based suboptimal schedulers for the throughput maximizing and
delay minimizing problems formulated in this paper.
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