• 제목/요약/키워드: scheduling Risk

검색결과 57건 처리시간 0.021초

A New Ship Scheduling Set Packing Model Considering Limited Risk

  • Kim, Si-Hwa;Hwang, Hee-Su
    • 한국항해항만학회지
    • /
    • 제30권7호
    • /
    • pp.561-566
    • /
    • 2006
  • In this paper, we propose a new ship scheduling set packing model considering limited risk or variance. The set packing model is used in many applications, such as vehicle routing, crew scheduling, ship scheduling, cutting stock and so on. As long as the ship scheduling is concerned, there exits many unknown external factors such as machine breakdown, climate change and transportation cost fluctuation. However, existing ship scheduling models have not considered those factors apparently. We use a quadratic set packing model to limit the variance of expected cost of ship scheduling problems under stochastic spot rates. Set problems are NP-complete, and additional quadratic constraint makes the problems much harder. We implement Kelley's cutting plane method to replace the hard quadratic constraint by many linear constrains and use branch-and-bound algorithm to get the optimal integral solution. Some meaningful computational results and comments are provided.

응급의료센터를 위한 위험기반 운영계획 모델 (Risk-based Operational Planning and Scheduling Model for an Emergency Medical Center)

  • 이미림;이진표;박민재
    • 산업경영시스템학회지
    • /
    • 제42권2호
    • /
    • pp.9-17
    • /
    • 2019
  • In order to deal with high uncertainty and variability in emergency medical centers, many researchers have developed various models for their operational planning and scheduling. However, most of the models just provide static plans without any risk measures as their results, and thus the users often lose the opportunity to analyze how much risk the patients have, whether the plan is still implementable or how the plan should be changed when an unexpected event happens. In this study, we construct a simulation model combined with a risk-based planning and scheduling module designed by Simio LLC. In addition to static schedules, it provides possibility of treatment delay for each patient as a risk measure, and updates the schedule to avoid the risk when it is needed. By using the simulation model, the users can experiment various scenarios in operations quickly, and also can make a decision not based on their past experience or intuition but based on scientific estimation of risks even in urgent situations. An example of such an operational decision making process is demonstrated for a real mid-size emergency medical center located in Seoul, Republic of Korea. The model is designed for temporal short-term planning especially, but it can be expanded for long-term planning also with some appropriate adjustments.

Evaluating Schedule Uncertainty in Unit-Based Repetitive Building Projects

  • Okmen, Onder
    • Journal of Construction Engineering and Project Management
    • /
    • 제3권2호
    • /
    • pp.21-34
    • /
    • 2013
  • Various risk factors affect construction projects. Due to the uncertainties created by risk factors, actual activity durations frequently deviate from the estimated durations in either favorable or adverse direction. For this reason, evaluation of schedule uncertainty is required to make decisions accurately when managing construction projects. In this regard, this paper presents a new computer simulation model - the Repetitive Schedule Risk Analysis Model (RSRAM) - to evaluate unit-based repetitive building project schedules under uncertainty when activity durations and risk factors are correlated. The proposed model utilizes Monte Carlo Simulation and a Critical Path Method based repetitive scheduling procedure. This new procedure concurrently provides the utilization of resources without interruption and the maintenance of network logic through successive units. Furthermore, it enables assigning variable production rates to the activities from one unit to another and any kind of relationship type with or without lag time. Details of the model are described and an example application is presented. The findings show that the model produces realistic results regarding the extent of uncertainty inherent in the schedule.

한계보수비용법 및 위험지수 평준화법에 의한 최적전원보수계획의 비교 (A Comparative Study on Optimal Generation Maintenance Scheduling with Marginal Maintenance Cost and Levelized Risk Methods)

  • 이봉용;심건보
    • 대한전기학회논문지
    • /
    • 제41권1호
    • /
    • pp.9-17
    • /
    • 1992
  • Proper resource allocation is also a very important topic in power system problems, especially in operation and planning. One such is optimal maintenance problem in operation and planning. Least cost and highest reliability should be the subjects to be pursued. A probabilistic operation simulation model developed recently by authors is applied to the proboem of optimal maintenance scheduling. Three different methods are compared, marginal maintenance cost, levelized risk and maintenance space. The method by the marginal maintenance costs shows the least cost, the highest reliability and the highest maintenance outage rates. This latter characteristics may considerably influence the results of genetation planning, because the usual maintenance outages obtained from the other methods have shown to be lower.

  • PDF

시스템 효율성 증대를 위한 그리드 컴퓨팅 기반의 위험 관리 시스템 (Risk Management System based on Grid Computing for the Improvement of System Efficiency)

  • 정재훈;김신령;김영곤
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.283-290
    • /
    • 2016
  • 최근 과학 기술이 발전함에 따라 복잡한 문제를 해결하기 위하여 고성능의 계산 자원이 필요하게 되었다. 이러한 요구를 충족시키기 위하여 지역적으로 분산되어 있는 이질적인 고성능 컴퓨팅 자원을 하나로 묶어 거대한 시스템을 구성하는 그리드 컴퓨팅에 대한 연구가 활발하게 이루어지고 있다. 하지만 제한된 자원 안에서 최대한의 결과를 얻어내기 위한 프로세스, 실시간 작업의 총 실행시간을 정확하게 예측할 수 있는 스케줄링 정책이 미흡한 실정이다. 이러한 문제점을 해결하기 위해, 본 논문에서는 시스템 효율성 증대를 위한 시스템 구조, 프로세스를 도출하고, 그리드 컴퓨팅 기반의 작업 방법론 도출, 자원(Agent)의 작업에 대한 문제점을 효율적으로 관리할 수 있는 위험 정책 모듈, 자원 할당 및 문제되는 자원들을 재할당 할 수 있는 스케줄링 기법 및 할당 기법, 자원(Agent) 모니터링을 효율적으로 관리할 수 있도록 그리드 컴퓨팅 기반의 위험 관리 시스템을 제안하였다.

신제품 개발 프로젝트 일정관리기법 (Project Scheduling Technique for New Product Development)

  • 안태호
    • 경영과정보연구
    • /
    • 제14권
    • /
    • pp.67-77
    • /
    • 2004
  • Although project management for new product development is a very important issue, only a few approach from project scheduling has been made. The traditional project scheduling research has focused on the project network with certainty, but the new product development project has some uncertainties in network; Some activities may not need to be peformed, and/or some precedent relationships between activities may not need to be kept. In this paper, a simulation model is introduced in order to reflect uncertainties in project network for new product development. This simulation model can be used as a project scheduling technique for product development. By repeating the simulation, the degree of the risk and the feasibility of the project can be assessed.

  • PDF

A Comparative Study of Maintenance Scheduling Methods for Small Utilities

  • Ong, H.L.;Goh, T.N.;Eu, P.S.
    • International Journal of Reliability and Applications
    • /
    • 제4권1호
    • /
    • pp.13-26
    • /
    • 2003
  • This paper presents a comparative study of a few commonly used maintenance scheduling methods for small utilities that consists solely of thermal generating plants. Two deterministic methods and a stochastic method are examined. The deterministic methods employ the leveling of reserve capacity criterion, of which one uses a heuristic rule to level the deterministic equivalent load obtained by using the product of the unit capacity and its corresponding forced outage rate. The stochastic method simulates the leveling of risk criterion by using the peak load carry capacity of available units. The results indicate that for the size and type of the maintenance scheduling problem described In this study, the stochastic method does not produce a schedule which is significantly better than the deterministic methods.

  • PDF

공사 착공 전 단계의 공정리스크 대응방안 (Scheduling Risk Management at the Preconstruction Phase)

  • 박지훈;김선국;한충희
    • 한국건설관리학회:학술대회논문집
    • /
    • 한국건설관리학회 2004년도 제5회 정기학술발표대회 논문집
    • /
    • pp.457-461
    • /
    • 2004
  • 착공 전 단계의 부족한 공정리스크 관리는 시공단계의 공정리스크로 발생하여 프로젝트의 공기연장과 원가상승 등의 부정적인 영향을 미치게 된다. 따라서 착공 전 단계의 공정리스크 관리는 프로젝트 성공의 중요한 요소이자 건설기업의 경쟁력으로 대두되고 있다. 이러한 관점에서 본 연구는 공사 착공 전 단계의 공정리스크 관리를 위한 대상 공종별 리스크 요인 도출 및 대응방안을 제시하고자 한다. 대상 공종은 토공사, 철근콘크리트공사, 철골공사, 커튼월공사로 한정하였고 방법론은 지식관리시스템(Knowledge Management System)을 적용하여 공종별 전문가에 의한 업무 플로우를 작성하였다. 업무 플로우 분석을 통하여 업무 단계별 공정리스크 인자를 도출하였고, 리스크 인자의 중요도에 따른 리스크 요인별 대응방안과 담당자, 수행시점, 요구정보 등과 같은 세부대책을 제시하였다.

  • PDF

확률적 운전모델에서의 최적전원보수계획 (Optimal Maintenance Scheduling with the Probabilistic Costing Model)

  • 최익권;심건보;이봉용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.855-858
    • /
    • 1988
  • Two methods for probabilistic maintenance scheduling are developed and compared ; one with operation and supplied-shortage cost and other with risk level of LOLP. Based on the real economic power dispatch, quadratic optimal maintenance conditions are obtained and simple amtrix equations are suggested for solutions. Both methods are compared in a sample system of 26,000 [MW] peak and 32,000 [MW] generation capacity.

  • PDF

독립운전 시나리오를 고려한 마이크로그리드의 최적 발전기 기동정지 계획 (Unit Commitment of a Microgrid Considering Islanded Operation Scenarios)

  • 이시영
    • 전기학회논문지
    • /
    • 제67권6호
    • /
    • pp.708-714
    • /
    • 2018
  • Islanded operation of a microgrid can ensure the reliable operation of the system when a large accident occurs in the main grid. However, because the generation capability of a microgrid is typically limited, a microgrid operator should take islanded operation risk into account in scheduling its generation resources. To address this problem, in this paper we have proposed two unit commitment formulations based on the islanding scenario that reflect the expected and worst-case values of the islanded operation risk. An optimal resource scheduling strategy is obtained for the microgrid operator by solving these optimization problem, and the effectiveness of the proposed method is investigated by numerical simulations.