• Title/Summary/Keyword: schedule optimization

Search Result 179, Processing Time 0.037 seconds

Structural Optimization By Adaptive Simulated Annealing's Cooling Schedule Change (어댑티브 시뮬레이티드 어넬링의 냉각스케줄에 따른 구조최적설계)

  • Jung, Suk-Hoon;Park, Jung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1436-1441
    • /
    • 2003
  • Recently, simulated annealing algorithms have widely been applied to many structural optimization problems. In this paper, simulated annealing, boltzmann annealing, fast annealing and adaptive simulated annealing are applied to optimization of truss structures for improvement quality of objective function and number of function evaluation. These algorithms are classified by cooling schedule. The authors have changed parameters of ASA's cooling schedule and the influence of cooling schedule parameters on structural optimization obtained is discussed. In addition, cooling schedule of BA and ASA mixed is applied to 10 bar-truss structure.

  • PDF

Prevention of delay in implant services using time schedule (타임스케줄을 이용한 임플란트 수술의 지연 개선)

  • Ji-Yeon, Park
    • Journal of Korean Academy of Dental Administration
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • This study introduces research on the quality of medical services, optimization of medical services, dental medical services, implant medical services, and time schedules, as well as the effective process of dental implant medical services, which is expensive and requires a long treatment period. For improvement, it is suggested to evaluate using a time schedule. In this method, a time schedule is prepared in which each step, starting from the patients appointment until the completion of the treatment process, is allotted a certain time. This schedule was finalized in consultation with the employees. When performing all implant operations, the starting time of each item was checked to evaluate the degree of compliance and to understand any reasons for delay in each step. After identifying the causes for delay at each step, suitable steps to rectify the drawbacks were developed, and an optimal plan for patient management was determined. Changes in waiting time and human resource utilization were shown as concrete data, suggesting that such a schedule is meaningful as a decision-making support tool.

The application of operations research to airline schedule planning (항공 일정계획에 경영과학의 활용)

  • Kim, Jun-Hyeok;Kim, Yeo-Geun;Lee, Han-Beom
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.27-37
    • /
    • 2007
  • Many problems related to airline business belong to large-scale optimization problems, so that it is expected that the state-of-art optimization techniques are widely applied to making the airline operation effective and competitive. This paper introduces the concepts and mathematical models of various optimization problems in airline system. Airlines involve many activities that utilize airline resources such as aircrafts and crews to make profit. We view the airline activities in the planning and operational aspects. In the planning viewpoint, we discuss the flight schedule design problem that impacts on passenger demand directly. For aircraft and crews, we deal with fleet assignment, aircraft routing, crew pairing optimization, and crew assignment problem. In the operational viewpoint, we concern schedule recovery problems for aircrafts and crew using the method of reassigning available resources when airlines face with the unexpected situations.

  • PDF

Optimization of Job-Shop Schedule Considering Deadlock Avoidance (교착 회피를 고려한 Job-Shop 일정의 최적화)

  • Jeong, Dong-Jun;Lee, Du-Yong;Im, Seong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2131-2142
    • /
    • 2000
  • As recent production facilities are usually operated with unmanned material-handling system, the development of an efficient schedule with deadlock avoidance becomes a critical problem. Related researches on deadlock avoidance usually focus on real-time control of manufacturing system using deadlock avoidance policy. But little off-line optimization of deadlock-free schedule has been reported. This paper presents an optimization method for deadlock-free scheduling for Job-Shop system with no buffer. The deadlock-free schedule is acquired by the procedure that generates candidate lists of waiting operations, and applies a deadlock avoidance policy. To verify the proposed approach, simulation resultsare presented for minimizing makespan in three problem types. According to the simulation results the effect of each deadlock avoidance policy is dependent on the type of problem. When the proposed LOEM (Last Operation Exclusion Method) is employed, computing time for optimization as well as makespan is reduced.

Schedule Optimization in Resource Leveling through Open BIM Based Computer Simulations

  • Kim, Hyun-Joo
    • Journal of KIBIM
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • In this research, schedule optimization is defined as balancing the number of workers while keeping the demand and needs of the project resources, creating the perfect schedule for each activity. Therefore, when one optimizes a schedule, multiple potentials of schedule changes are assessed to get an instant view of changes that avoid any over and under staffing while maximizing productivity levels for the available labor cost. Optimizing the number of workers in the scheduling process is not a simple task since it usually involves many different factors to be considered such as the development of quantity take-offs, cost estimating, scheduling, direct/indirect costs, and borrowing costs in cash flow while each factor affecting the others simultaneously. That is why the optimization process usually requires complex computational simulations/modeling. This research attempts to find an optimal selection of daily maximum workers in a project while considering the impacts of other factors at the same time through OPEN BIM based multiple computer simulations in resource leveling. This paper integrates several different processes such as quantity take-offs, cost estimating, and scheduling processes through computer aided simulations and prediction in generating/comparing different outcomes of each process. To achieve interoperability among different simulation processes, this research utilized data exchanges supported by building SMART-IFC effort in automating the data extraction and retrieval. Numerous computer simulations were run, which included necessary aspects of construction scheduling, to produce sufficient alternatives for a given project.

A STUDY ON CONSTRUCTION SCHEDULE OPTIMIZATION INTEGRATING WITH CASH-FLOW

  • Hyung-Guk Lee;Dong-Pil Shin;Sung-Hoon An;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.141-144
    • /
    • 2013
  • This paper presents a system called a Cash-flow based Construction Schedule Optimization system(CfSO). The existing CPM effectively handles schedule and cost management. However, funding strategy should be considered to obtain maximum profit and to progress a project favorably. One of measures is to coordinate the contract terms between owner and subcontractors (or suppliers). Contractor may decrease the interest cost attributed to project financing by adjusting the timing of cash-inflows and cash-outflows. It is an excellent method maximizing profits. This paper presents a method to estimate the amount of a cash-flow occurred periodically by integrating the terms of contract into scheduling. The proposed method is implemented as a system prototype in Microsoft Excel. This system provides a user an automated tool that identifies an optimal schedule that secures maximum profit by adjusting start and finish times of non-critical activities' free-floats without affecting on the project completion time. This system supports a project manager to establish an optimum project schedule and identifies profitable contractual conditions against to a construction owner.

  • PDF

Resource and Sequence Optimization Using Constraint Programming in Construction Projects

  • Kim, Junyoung;Park, Moonseo;Ahn, Changbum;Jung, Minhyuk;Joo, Seonu;Yoon, Inseok
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.608-615
    • /
    • 2022
  • Construction projects are large-scale projects that require extensive construction costs and resources. Especially, scheduling is considered as one of the essential issues for project success. However, the schedule and resource management are challenging to conduct in high-tech construction projects including complex design of MEP and architectural finishing which has to be constructed within a limited workspace and duration. In order to deal with such a problem, this study suggests resource and sequence optimization using constraint programming in construction projects. The optimization model consists of two modules. The first module is the data structure of the schedule model, which consists of parameters for optimization such as labor, task, workspace, and the work interference rate. The second module is the optimization module, which is for optimizing resources and sequences based on Constraint Programming (CP) methodology. For model validation, actual data of plumbing works were collected from a construction project using a five-minute rate (FMR) method. By comparing actual data and optimized results, this study shows the possibility of reducing the duration of plumbing works in construction projects. This study shows decreased overall project duration by eliminating work interference by optimizing resources and sequences within limited workspaces.

  • PDF

OVERALL BENEFIT-DURATION OPTIMIZATION (OBDO) FOR OWNERS IN LARGE-SCALE CONSTRUCTION PROJECTS

  • Seng-Kiong Ting;Heng Pan
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.780-785
    • /
    • 2005
  • This paper aims to consider an overall benefit-duration optimization (OBDO) problem for the sake of maximizing owner's economic benefits, whilst considering influences of schedule compression incurred opportunity income on the profitability of a large-scale construction project. Unlike previous schedule optimization models and techniques that have focused on project duration or cost minimization, with greater weight on contractors' interests, OBDO facilitates owner's economic benefits through overall benefit-duration optimization. In this paper, the objective function of OBDO model is formulated. An example is illustrated to prove the feasibility and practicability of the overall benefit-duration optimization problem. The significance of employing OBDO model and future research work are also described.

  • PDF

Maintenance Staff Scheduling at Afam Power Station

  • Alfares, H.K.;Lilly, M.T.;Emovon, I.
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.1
    • /
    • pp.22-27
    • /
    • 2007
  • This paper describes the optimization of maintenance workforce scheduling at Afam power station in Nigeria. The objective is to determine the optimum schedule to satisfy growing maintenance labour requirements with minimum cost and highest efficiency. Three alternative maintenance workforce schedules are compared. The first alternative is to continue with the traditional five-day workweek schedule currently being practiced by Afam power station maintenance line. The second alternative is to switch to a seven-day workweek schedule for the morning shift only. The third alternative is to use a seven-day workweek schedule for all three work shifts. The third alternative is chosen, as it is expected to save 11% of the maintenance labour cost.

Optimization of Planning-Level Locomotive Scheduling at KNR and Development of Its Implementation Prototype Program (한국철도에서의 계획단계 동력차 스케줄링 최적화 및 전문가 지원시스템의 프로토타입 프로그램 개발에 관한 연구)

  • 문대섭;김동오
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.46-53
    • /
    • 1999
  • As of July 1999, i,185 lomocotives(excluding metropolitan area electric locomotives) are in Korean National Railroad(KNR). With this limited number of resources assigning locomotives to each trains of timetable is very important in the entire railway management point of view because schedule can be regarded as goods in transportation industry. On a simple rail network, it is rather easier to assign proper locomotives to trains with the experience of operating experts and get optimal assignment solution. However, as the network is getting bigger and complicated, the number of trains and corresponding locomotives will be dramatically increased to rover all the demands required to service all of the trains in timetable. There will be also numerous operational constraints to be considered. Assigning proper locomotives to trains and building optimal cyclic rotations of locomotive routings will result in increasing efficiency of schedule and giving a guarantee of more profit. The purpose of this study is two fold: (1) we consider a planning-level locomotive scheduling problem with the objective of minimizing the wasting cost under various practical constraints and (2) development of implementation prototype program of its assigning result. Not like other countries, i.e. Canada, Sweden, Korean railroad operates on n daily schedule basis. The objective is to find optimal assignment of locomotives of different types to each trains, which minimize the wasting cost. This problem is defined on a planning stage and therefore, does not consider operational constraints such as maintenance and emergency cases. Due to the large scale of the problem size and complexity, we approach with heuristic methods and column generation to find optimal solution. The locomotive scheduling prototype consists of several modules including database, optimization engine and diagram generator. The optimization engine solves MIP model and provides an optimal locomotive schedule using specified optimization algorithms. A cyclic locomotive route diagram can be generated using this optimal schedule through the diagram generator.

  • PDF