• Title/Summary/Keyword: scattering film

Search Result 299, Processing Time 0.031 seconds

The Thickness Determination of Silicone Resin on Zinc Electroplated Steels using Compton Scattering (Compton 산란선을 이용한 아연계 전기도금강판 표면의 Slicone Resin Film 두께측정)

  • Jae Chun So;Do Hyung Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.539-544
    • /
    • 1991
  • A method to determine the thickness of silicone resin film on zinc eletroplated steel using X-ray compton scattering was investigated. On the basis of the fact that compton scattering process predominates over photoelectric absorption for the light elements such as C, H, O and Si, the compton scattered line of RhK$_{\alpha}$ was used to determine the thickness of silicone resin. In this method, the standard calibration curve for thickness determination of silicone resin film was found to be linear in the range of 0.2~5.0 ${mu}$m film thickness. The analytical results agreed well with those obtained by the gravimetric method and the accuracy was found to be 0.22 ${mu}$m.

  • PDF

2D/3D Convertible Integral Imaging Display Using Point Light Source Array Instrumented by Polarization Selective Scattering Film

  • Song, Byoungsub;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.162-167
    • /
    • 2013
  • A two-dimensional (2D) / three-dimensional (3D) convertible display system based on integral imaging is proposed to adopt a novel switchable point light source array, which is implemented using the polarization modulator and the polarization selective scattering film that transmits or scatters the incident light due to its polarization direction. The 2D and the 3D display modes of the proposed system can be modulated by controlling the polarization direction of back light using the polarization modulator. We explain the basic principles of the proposed system and verify the feasibility of the system through preliminary experiments.

The Growth of Diamond-Like-Carbon (DLC) Film by PECVD and the Characterization (PECVD에 의한 DLC 박막의 성장과 그 특성 조사)

  • 조재원;김태환;김대욱;최성수
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.248-254
    • /
    • 1998
  • DLC(Diamond-Like-Carbon) thin film, one of the solid state amorphous carbon films, has been deposited by the method of PECVD (Plasma Enhanced Chemical Vapor Deposition). The structural features have been characterized using both FT-IR Spectroscopy and Raman Scattering. The film is considered to consist of microcrystalline diamond domains and graphitelike carbon domains, which are interconnected by hydrogenated $sp^3$ tetrahedral carbons. This shows a good agreement with the results by I-Vmeasurements. In I-Vstudy, the sudden increase of current has been observed and this phenomenon is understood to be due to the tunneling effect between graphitelike domains. A characteristic feature related to the $\beta$-SiC has been identified in the study of Raman Scattering for the very thin film, which suggests that a buffer layer forms at the interface of the Si substrate and the carbon film.

  • PDF

Effect of AIN Buffers by R. F. Sputter on Defects of GaN Thin films (R. F. Sputter법으로 성장된 AIN 완충층이 GaN 박막결함에 미치는 영향)

  • 이민수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.497-501
    • /
    • 2004
  • The crystal structure of the GaN film on the AIN buffer layer grown by R. F sputtering with different thickness has been studied using X-ray scattering and transmission electron microscopy(TEM). The interface roughness between the AIN buffer layer and the epitaxial GaN film, due to crossover from planar to island grains, produced edge dislocations. The strain, coming from lattice mismatch between the AIN buffer layer and the epitaxial GaN film, produced screw dislocations. The density of the edge and screw dislocation propagating from the interface between the GaN film and the AIN buffer layer affected the electric resistance of GaN film.

A Study on the Change of Si Thin Film Characteristics to Find Design Rules for Sputtering Equipment (스퍼터 장비의 설계 룰을 찾기 위한 Si박막 특성 변화 연구)

  • Kim, Bo-Young;Kang, Seo Ik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.100-105
    • /
    • 2020
  • Recently, as display and semiconductor devices have been miniaturized and highly integrated, there is a demand for optimization of the structural characteristics of the thin film accordingly. The sputtering device has the advantage of stably obtaining a desired thin film depending on the material selected for the target. However, due to the structural characteristics of the sputtering equipment, the structural characteristics of the film may be different depending on the incidence angle of the sputtering target material to the substrate. In this study, the characteristics of the thin film material according to the scattering angle of the target material and the incidence position of the substrate were studied to find the optimization design rule of the sputtering equipment. To this end, a Si thin film of 1 ㎛ or less was deposited on the Si(100) substrate, and then the microstructure, reflectance, surface roughness, and thin film crystallinity of the thin film formed for each substrate location were investigated. As a result of the study, it was found that as the sputter scattering angle increased and the substrate incident angle decreased, the gap energy along with the surface structure of the thin film increased from 1.47 eV to 1.63 eV, gradually changing to a non-conductive tendency.

Influence of Annealing Temperature on Structural and Thermoelectrical Properties of Bismuth-Telluride-Selenide Ternary Compound Thin Film

  • Kim, Youngmoon;Choi, Hyejin;Kim, Taehyeon;Cho, Mann-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.304.2-304.2
    • /
    • 2014
  • Chalcogenides (Te,Se) and pnictogens(Bi,Sb) materials have been widely investigated as thermoelectric materials. Especially, Bi2Te3 (Bismuth telluride) compound thermoelectric materials in thin film and nanowires are known to have the highest thermoelectric figure of merit ZT at room temperature. Currently, the thermoelectric material research is mostly driven in two directions: (1) enhancing the Seebeck coefficient, electrical conductivity using quantum confinement effects and (2) decreasing thermal conductivity using phonon scattering effect. Herein we demonstrated influence of annealing temperature on structural and thermoelectrical properties of Bismuth-telluride-selenide ternary compound thin film. Te-rich Bismuth-telluride-selenide ternary compound thin film prepared co-deposited by thermal evaporation techniques. After annealing treatment, co-deposited thin film was transformed amorphous phase to Bi2Te3-Bi2Te2Se1 polycrystalline thin film. In the experiment, to investigate the structural and thermoelectric characteristics of Bi2Te3-i2Te2Se1 films, we measured Rutherford Backscattering spectrometry (RBS), X-ray diffraction (XRD), Raman spectroscopy, Scanning eletron microscopy (SEM), Transmission electron microscopy (TEM), Seebeck coefficient measurement and Hall measurement. After annealing treatment, electrical conductivity and Seebeck coefficient was increased by defect states dominated by selenium vacant sites. These charged selenium vacancies behave as electron donors, resulting in carrier concentration was increased. Moreover, Thermal conductivity was significantly decreased because phonon scattering was enhanced through the grain boundary in Bi2Te3-Bi2Te2Se1 polycrystalline compound. As a result, The enhancement of thermoelectric figure-of-merit could be obtained by optimal annealing treatment.

  • PDF

A study on the LCD backlight unit using polymer (LCD backlight unit의 고분자 산란형 도광판에 관한 연구)

  • 정일용;박우상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.578-581
    • /
    • 1999
  • Dot pattern print methods composed of a diffusion film and two prism sheets, have been generally used for backlighting systems of LCDs. However, this methods require complex structures and show high power consumption and optical loss. To improve these disadvantages of conventional backlight units, light guides using highly scattering optical transmissions (HSOT) polymer as scatters, have been introduced. In this study we analyzed multiple scattering effect in light guide by means of Monte carlo simulation based on Mie scattering theory and ray tracing method. As a result it was revealed that scattering intensity depends on the size of scatters. On the other hands, it was shown that scattering efficiency depends on the wavelength of fluorescent lamp as well as the size of scatters.

  • PDF

Improvement of Polarization Maintenance Property of Scattering Polarizer Film for Double-Screen 3D Projection Display Screen Applications Via Surface Oxide Deposition (산화막 증착을 통한 이중스크린 3D 프로젝션 디스플레이 스크린용 산란형 편광필름의 편광유지도 개선)

  • Kim, Dae-Yeon;Seo, Jong-Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • Keeping the polarization direction of the projection light unchanged is of crucial importance for high quality of images on a double-screen 3D projection display system. It has been found that the deposition of oxide layers on the surfaces of scattering polarizer film results in an improvement of polarization maintenance property of the film. The secondary image formed on the front screen by the light scattered from the rear screen decreases by 30% through the application of oxide layers on both surfaces of the screen. Since the oxide layer can also be used as an anti-reflection (AR) coating of the film, this method is very effective for the projection display applications.

Experimental Evidence for New Pinning Conditions in Strongly Pinned Permalloy Film

  • Han, Kyung-Hunn;Cho, Jae-Hun;Lee, Suk-Mock
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.27-30
    • /
    • 2007
  • Experimental evidence suggests that spin pinning conditions for standing spin mode in polycrystalline $Ni_{84}Fe_{16}$ alloy film, is confirmed using the four categories of Camley et al. and the value of q$\bot$ for the pinning conditions, this was achieved by performing Brillouin light scattering measurements. The value of q$\bot$ was observed, in order to increase at a rate of $\pi$/2 with an increasing mode number. With this condition, the coexistence of standing spin wave modes was shown, with intermediate pinning, in addition to free and strong pinning. The values for spin-wave-stiffness constant ($D_B$), g-factor (g), and surface magnetization (4$\pi$M) of the Permalloy film were obtained from the results of BLS, and determined to be $D_B=1.85{\pm}0.05Oecm^2$, $g=2.11{\pm}0.02$, and 4$\pi$M=8.7 kG, respectively.

Investigation of Device Characteristics on the Mechanical Film Stress of Contact Etch Stop Layer in Nano-Scale CMOSFET (Nano-Scale CMOSFET에서 Contact Etch Stop Layer의 Mechanical Film Stress에 대한 소자특성 분석)

  • Na, Min-Ki;Han, In-Shik;Choi, Won-Ho;Kwon, Hyuk-Min;Ji, Hee-Hwan;Park, Sung-Hyung;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.57-63
    • /
    • 2008
  • In this paper, the dependence of MOSFET performance on the channel stress is characterized in depth. The tensile and compressive stresses are applied to CMOSFET using a nitride film which is used for the contact etch stop layer (CESL). Drain current of NMOS and PMOS is increased by inducing tensile and compressive stress, respectively, due to the increased mobility as well known. In case of NMOS with tensile stress, both decrease of the back scattering ratio ($\tau_{sat}$) and increase of the thermal injection velocity ($V_{inj}$) contribute the increase of mobility. It is also shown that the decrease of the $\tau_{sat}$ is due to the decrease of the mean free path ($\lambda_O$). On the other hand, the mobility improvement of PMOS with compressive stress is analyzed to be only due to the so increased $V_{inj}$ because the back scattering ratio is increased by the compressive stress. Therefore it was confirmed that the device performance has a strong dependency on the channel back scattering of the inversion layer and thermal injection velocity at the source side and NMOS and PMOS have different dependency on them.