• 제목/요약/키워드: scan line

Search Result 471, Processing Time 0.023 seconds

A Study on the Generation of Digital Elevation Model from IRS-1C Satellite Image Data (IRS-1C 위성데이타를 이용한 수치표고모델 생성에 관한 연구)

  • 안기원;이효성;서두천;신석효
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.3
    • /
    • pp.293-300
    • /
    • 1999
  • The study aims to develope techniques for generating digital elevation model(DEM) from IRS-1C PAN stereo image data. The bundle adjustment technique was used to determine the satellite exterior orientation parameters as a function of along-track lines. The first degree of polynomial was selected as a function of satellite attitude and position for each scan line. To evaluate the DEM and orthoimage generated, the resulted three dimensional coordinates of the 16 elevation points were computed with the map coordinates. The elevation test showed that root mean square errors of the DEM elevation was about $\pm{16.66m}$ meters.

  • PDF

Development of SD-OCT for Imaging the in vivo Human Tympanic Membrane

  • Cho, Nam-Hyun;Jung, Un-Sang;Kwon, Hyeong-Il;Jeong, Hyo-Sang;Kim, Jee-Hyun
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.74-77
    • /
    • 2011
  • We report a novel extension of 840 nm wavelength- based spectral domain optical tomography to in vivo/real-time human middle ear diagnosis. The system was designed to access the middle ear region with a specifically dedicated handheld probe. The real-time displaying feature was mandatory for in vivo imaging human subject with the handheld probe, and the system could provide about 20 frames per second for 2048 pixels by 1000 A-scans without using any graphics process units under the Labview platform. The inner ear structure of a healthy male volunteer was imaged with the developed system with the axial and lateral resolutions of $15\;{\mu}m$ and $30\;{\mu}m$, respectively. The application of the OCT technology to early diagnose otitis media(OM) is very promising and could be another extensive branch in the OCT field because it provides the depth resolved image including tympanic membrane (TM) and structures below TM whereas the conventional otoscope technique only gives asurface image of the TM.

Development of Real-time Flatness Measurement System of COF Film using Pneumatic Pressure (공압을 이용한 COF 필름의 실시간 위치 평탄도 측정 시스템 개발)

  • Kim, Yong-Kwan;Kim, JaeHyun;Lee, InHwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 2021
  • In this paper, an inspection system has been developed where pneumatic instruments are used to stretch the film using compressed air, thus the curl problem can be overcome. When the pneumatic system is applied, a line scan camera should be used instead of an area camera because the COF surface makes an arc by the air pressure. The distance between the COF and the inspection camera should be kept constant to get a clear image, thus the position of COF is to be monitored on real-time. An operating software has been also developed which is switching on/off the pneumatic system, determining the COF position using a camera vision, displaying the contour of the COF side view, sending self-diagnosis result and etc. The developed system has been examined using the actual roll of COF, which convince that the system can be an effective device to inspect the COF rolls in process.

Alteration Analysis of Normal Human Brain Metabolites with Variation of SENSE and NEX in 3T Multi Voxel Spectroscopy (3T Multi Voxel Spectroscopy에서 SENSE와 NEX 변화에 따른 정상인 뇌 대사물질 변화 분석)

  • Seong, Yeol-Hun;Rhim, Jae-Dong;Lee, Jae-Hyun;Cho, Sung-Bong;Woo, Dong-Chul;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.256-262
    • /
    • 2008
  • To evaluate the metabolic changes in normal adult brains due to alterations SENSE and NEX (number of excitation) by multi voxel MR Spectroscopy at 3.0 Tesla. The study group was composed of normal volunteers (5 men and 8 women) with a mean ($\pm$ standard deviation) age of 41 (${\pm}11.65$). Their ages ranged from 28 to 61 years. MR Spectroscopy was performed with a 3.0T Achieva Release Version 2.0 (Philips Medical System-Netherlands). The 8 channel head coil was employed for MRS acquisition. The 13 volunteers underwent multi voxel spectroscopy (MVS) and single voxel spectroscopy (SVS) on the thalamus area with normally gray matter. Spectral parameters were as follows: 15 mm of thickness; 230 mm of FOV (field of view); 2000 msecs of repetition time (TR); 288 msecs of echo time (TE); $110{\times}110$ mm of VOI (view of interest); $15{\times}15{\times}15$ mm of voxel size. Multi voxel spectral parameters were made using specially in alteration of SENSE factor (1~3) and 1~2 of NEX. All MRS data were processed by the jMRUI 3.0 Version. There was no significant difference in NAA/Cr and Cho/Cr ratio between MVS and SVS likewise the previous results by Ross and coworkers in 1994. In addition, despite the alterations of SENSE factor and NEX in MVS, the metabolite ratios were not changed (F-value : 1.37, D.F : 3, P-value : 0.262). However, line-width of NAA peak in MVS was 3 times bigger than that in SVS. In the present study, we demonstrated that the alterations of SENSE factor and NEX were not critically affective to the result of metabolic ratios in the normal brain tissue.

  • PDF

The influence of composite resin restoration on the stress distribution of notch shaped noncarious cervical lesion A three dimensional finite element analysis study (복합레진 수복물이 쐐기형 비우식성 치경부 병소의 응력 분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Lee, Chae-Kyung;Park, Jeong-Kil;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.69-79
    • /
    • 2007
  • The purpose of this study was to investigate the effects of composite resin restorations on the stress distribution of notch shaped noncarious cervical lesion using three-dimensional (3D) finite element analysis (FEA). Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072 ; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid or flowable resin and each restoration was simulated with adhesive layer thickness ($40{\mu}m$) A static load of 500 N was applied on a point load condition at buccal cusp (loading A) and palatal cusp (loading B). The principal stresses in the lesion apex (internal line angle of cavity) and middle vertical wall were analyzed using ANSYS. The results were as follows 1. Under loading A, compressive stress is created in the unrestored and restored cavity. Under loading B, tensile stress is created. And the peak stress concentration is seen at near mesial corner of the cavity under each load condition. 2. Compared to the unrestored cavity, the principal stresses at the cemeto-enamel junction (CEJ) and internal line angle of the cavity were more reduced in the restored cavity on both load con ditions. 3. In teeth restored with hybrid composite, the principal stresses at the CEJ and internal line angle of the cavity were more reduced than flowable resin.

CT Examinations for COVID-19: A Systematic Review of Protocols, Radiation Dose, and Numbers Needed to Diagnose and Predict (COVID-19 진단을 위한 CT 검사: 프로토콜, 방사선량에 대한 체계적 문헌고찰 및 진단을 위한 CT 검사량)

  • Jong Hyuk Lee;Hyunsook Hong;Hyungjin Kim;Chang Hyun Lee;Jin Mo Goo;Soon Ho Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1505-1523
    • /
    • 2021
  • Purpose Although chest CT has been discussed as a first-line test for coronavirus disease 2019 (COVID-19), little research has explored the implications of CT exposure in the population. To review chest CT protocols and radiation doses in COVID-19 publications and explore the number needed to diagnose (NND) and the number needed to predict (NNP) if CT is used as a first-line test. Materials and Methods We searched nine highly cited radiology journals to identify studies discussing the CT-based diagnosis of COVID-19 pneumonia. Study-level information on the CT protocol and radiation dose was collected, and the doses were compared with each national diagnostic reference level (DRL). The NND and NNP, which depends on the test positive rate (TPR), were calculated, given a CT sensitivity of 94% (95% confidence interval [CI]: 91%-96%) and specificity of 37% (95% CI: 26%-50%), and applied to the early outbreak in Wuhan, New York, and Italy. Results From 86 studies, the CT protocol and radiation dose were reported in 81 (94.2%) and 17 studies (19.8%), respectively. Low-dose chest CT was used more than twice as often as standard-dose chest CT (39.5% vs.18.6%), while the remaining studies (44.2%) did not provide relevant information. The radiation doses were lower than the national DRLs in 15 of the 17 studies (88.2%) that reported doses. The NND was 3.2 scans (95% CI: 2.2-6.0). The NNPs at TPRs of 50%, 25%, 10%, and 5% were 2.2, 3.6, 8.0, 15.5 scans, respectively. In Wuhan, 35418 (TPR, 58%; 95% CI: 27710-56755) to 44840 (TPR, 38%; 95% CI: 35161-68164) individuals were estimated to have undergone CT examinations to diagnose 17365 patients. During the early surge in New York and Italy, daily NNDs changed up to 5.4 and 10.9 times, respectively, within 10 weeks. Conclusion Low-dose CT protocols were described in less than half of COVID-19 publications, and radiation doses were frequently lacking. The number of populations involved in a first-line diagnostic CT test could vary dynamically according to daily TPR; therefore, caution is required in future planning.

An implementation of 2D/3D Complex Optical System and its Algorithm for High Speed, Precision Solder Paste Vision Inspection (솔더 페이스트의 고속, 고정밀 검사를 위한 이차원/삼차원 복합 광학계 및 알고리즘 구현)

  • 조상현;최흥문
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.139-146
    • /
    • 2004
  • A 2D/3D complex optical system and its vision inspection algerian is proposed and implemented as a single probe system for high speed, precise vision inspection of the solder pastes. One pass un length labeling algorithm is proposed instead of the conventional two pass labeling algorithm for fast extraction of the 2D shape of the solder paste image from the recent line-scan camera as well as the conventional area-scan camera, and the optical probe path generation is also proposed for the efficient 2D/3D inspection. The Moire interferometry-based phase shift algerian and its optical system implementation is introduced, instead of the conventional laser slit-beam method, for the high precision 3D vision inspection. All of the time-critical algorithms are MMX SIMD parallel-coded for further speedup. The proposed system is implemented for simultaneous 2D/3D inspection of 10mm${\times}$10mm FOV with resolutions of 10 ${\mu}{\textrm}{m}$ for both x, y axis and 1 ${\mu}{\textrm}{m}$ for z axis. Experiments conducted on several nBs show that the 2D/3D inspection of an FOV, excluding an image capturing, results in high speed of about 0.011sec/0.01sec, respectively, after image capturing, with $\pm$1${\mu}{\textrm}{m}$ height accuracy.

Mining Frequent Trajectory Patterns in RFID Data Streams (RFID 데이터 스트림에서 이동궤적 패턴의 탐사)

  • Seo, Sung-Bo;Lee, Yong-Mi;Lee, Jun-Wook;Nam, Kwang-Woo;Ryu, Keun-Ho;Park, Jin-Soo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.127-136
    • /
    • 2009
  • This paper proposes an on-line mining algorithm of moving trajectory patterns in RFID data streams considering changing characteristics over time and constraints of single-pass data scan. Since RFID, sensor, and mobile network technology have been rapidly developed, many researchers have been recently focused on the study of real-time data gathering from real-world and mining the useful patterns from them. Previous researches for sequential patterns or moving trajectory patterns based on stream data have an extremely time-consum ing problem because of multi-pass database scan and tree traversal, and they also did not consider the time-changing characteristics of stream data. The proposed method preserves the sequential strength of 2-lengths frequent patterns in binary relationship table using the time-evolving graph to exactly reflect changes of RFID data stream from time to time. In addition, in order to solve the problem of the repetitive data scans, the proposed algorithm infers candidate k-lengths moving trajectory patterns beforehand at a time point t, and then extracts the patterns after screening the candidate patterns by only one-pass at a time point t+1. Through the experiment, the proposed method shows the superior performance in respect of time and space complexity than the Apriori-like method according as the reduction ratio of candidate sets is about 7 percent.

  • PDF

Usefulness Evaluation and Fabrication of the Radiation Shield Using 3D Printing Technology (3차원 프린팅 기술을 이용한 차폐체 제작 및 유용성 평가)

  • Jang, Hui-Min;Yoon, Joon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.1015-1024
    • /
    • 2019
  • In the medical field, X-rays are essential in the diagnosis and treatment of diseases, and the use of X-rays continues to increase with the development of imaging technology, but X-rays have the disadvantage of radiation exposure. Although lead protection tools are used in clinical practice to protect against radiation exposure, lead is classified as a heavy metal and can cause harmful reactions such as lead poisoning. Therefore, the purpose of this study is to investigate the usefulness of the shield fabricated using materials of FDM (Fused Deposition Modeling) 3D printer. In order to confirm the filament's line attenuation factor, phantoms were fabricated using PLA, XT-CF20, Wood, Glow and Brass, and CT scan was performed. And the shielding sheet of 100 × 100 × 2 mm size was modeled, the dose and shielding rate was measured by using a diagnostic X-ray generator and irradiation dose meter, and the shielding rate with lead protection tools. As a result of the experiment, the CT number of the brass was measured to be the highest, and the shielding sheet was manufactured by using the brass. As a result of confirming with the diagnostic X-ray generator, the shielding rate was increased in the shielding sheet having a thickness of 6 mm upon X-ray irradiation under the condition of 100 kV and 40 mAs. It measured by 90% or more, and confirmed that the shielding rate is higher than apron 0.25 mmPb. As a result of this study, it was confirmed that the shield fabricated by 3D printing technology showed high shielding rate in the diagnostic X-ray region. there was.

Evaluation of the Accuracy of Distance Measurements on 3D Volume-rendered Image of Human Skull Using Multi-detector CT: Effects of Acquisition Section Thickness and Reconstruction Section Thickness

  • Haijo Jung;Kim, Hee-Joung;Lee, Sang-Ho;Kim, Dong-Wook;Soonil Hong;Kim, Dong-Hyeon;Son, Hye-Kyung;Wonsuk Kang;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.457-460
    • /
    • 2002
  • The image quality of three-dimensional (3D) images has been widely investigated by the qualitative analysis method. A need remains for an objective and quantitative method to assess the image quality of 3D volume-rendered images. The purpose of this study was to evaluate the quantitative accuracy of distance measurements on 3D volume-rendered images of a dry human skull by using multi-detector computed tomography (MDCT). A radiologist measured five times the twenty-one direct measurement line items composed among twelve reference points on the skull surface with a digital vernier caliper. The water filled skull specimen was scanned with a MDCT according to the section thicknesses of 1.25, 2.50, 3.75, and 5.00 mm for helical (high quality; pitch 3:1) scan mode. MDCT data were reconstructed with its acquisition section thickness and with 1.25 mm section thickness for all scans. An observer also measured seven times the corresponding items on 3D volume-rendered images with measuring tools provided by volumetric analysis software. The quantitative accuracy of distance measurements on the 3D volume-rendered images was statistically evaluated (p-value < 0.05) by comparatively analyzing these measurements with the direct distance measurements. The accuracy of distance measurements on the 3D volume-rendered MDCT images acquired with 1.25, 2.50, 3,75 and 5.00 mm section thickness and reconstructed with its section thickness were 48%, 33%, 23%, and 14%, respectively. Meanwhile, there were insignificant statistical differences in accuracy of distance measurements among 3D volume-rendered images reconstructed with 1.25 mm section thickness for the each acquisition section thickness. MDCT images acquired with thick section thickness and reconstructed with thin section thickness in helical scan mode should be effectively used in medical planning of 3D volume-rendered images. The quantitative analysis of distance measurement may be a useful tool for evaluating the quantitative accuracy and the defining optimal parameters of 3D volume-rendered CT images.

  • PDF