• Title/Summary/Keyword: scaled energy

Search Result 345, Processing Time 0.026 seconds

Hybrid bolt-loosening detection in wind turbine tower structures by vibration and impedance responses

  • Nguyen, Tuan-Cuong;Huynh, Thanh-Canh;Yi, Jin-Hak;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.385-403
    • /
    • 2017
  • In recent years, the wind energy has played an increasingly important role in national energy sector of many countries. To harvest more electric power, the wind turbine (WT) tower structure becomes physically larger, which may cause more risks during long-term operation. Associated with the great development of WT projects, the number of accidents related to large-scaled WT has also been increased. Therefore, a structural health monitoring (SHM) system for WT structures is needed to ensure their safety and serviceability during operational time. The objective of this study is to develop a hybrid damage detection method for WT tower structures by measuring vibration and impedance responses. To achieve the objective, the following approaches are implemented. Firstly, a hybrid damage detection scheme which combines vibration-based and impedance-based methods is proposed as a sequential process in three stages. Secondly, a series of vibration and impedance tests are conducted on a lab-scaled model of the WT structure in which a set of bolt-loosening cases is simulated for the segmental joints. Finally, the feasibility of the proposed hybrid damage detection method is experimentally evaluated via its performance during the damage detection process in the tested model.

A Study on the Evaluation of the Daylighting Performance in the Sound Barrier Tunnel (축소모형을 이용한 방음터널의 자연채광 성능평가에 관한 연구)

  • Kim, Oim-Gon;Choi, Jeong-Min;Park, Chang-Seob;Lee, Kyung-Hee
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.2
    • /
    • pp.35-43
    • /
    • 2005
  • This study aims to evaluate the natural lighting performance in the sound barrier tunnel. Therefore, to evaluate the daylighting performance, the combinations of 3 tunnel roof types which are flat-roof-type(type A), slope-roof-type(type B), arch-roof-type(type C) and 3 window types which are side-window-type(type 1), one-window-roof type(type 2), two-window-roof type(type 3) are evaluated by experimenting small scaled models. In this 9 cases of experiment, illuminance levels of each case are analyzed and evaluated. The conclusion of this study is that slope-roof-type(B) and arch-roof-type(C) is preferable to flat-roof-type(A) and one-window-roof-type(B) and two-window-roof-type(C) is preferable to side-window-type(A) for daylighting in the sound barrier tunnel.

Experimental performance of Y-shaped eccentrically braced frames fabricated with high strength steel

  • Lian, Ming;Su, Mingzhou;Guo, Yan
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.441-453
    • /
    • 2017
  • In Y-shaped eccentrically braced frame fabricated with high strength steel (Y-HSS-EBF), link uses conventional steel while other structural members use high strength steel. Cyclic test for a 1:2 length scaled one-bay and one-story Y-HSS-EBF specimen and shake table test for a 1:2 length scaled three-story Y-HSS-EBF specimen were carried out to research the seismic performance of Y-HSS-EBF. These include the failure mode, load-bearing capacity, ductility, energy dissipation capacity, dynamic properties, acceleration responses, displacement responses, and dynamic strain responses. The test results indicated that the one-bay and one-story Y-HSS-EBF specimen had good load-bearing capacity and ductility capacity. The three-story specimen cumulative structural damage and deformation increased, while its stiffness decreased. There was no plastic deformation observed in the braces, beams, or columns in the three-story Y-HSS-EBF specimen, and there was no danger of collapse during the seismic loads. The designed shear link dissipated the energy via shear deformation during the seismic loads. When the specimen was fractured, the maximum link plastic rotation angle was higher than 0.08 rad for the shear link in AISC341-10. The Y-HSS-EBF is a safe dual system with reliable hysteretic behaviors and seismic performance.

A Experimental Study for Horizontal Geothermal Heat Exchanger System Performance during Intermediate Season (중간기 수평형 지중열교환기의 성능 검토를 위한 실험적 연구)

  • Hwang, Yong Ho;Cho, Sung Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • The horizontal earth-to-air heat exchanger (HEAHES) thermal performance is excellent on cooling and heating season in hot arid regions was reported. But the HEAHES thermal performance results is difficult to find on intermediate season. This paper was performed full scaled experiment to investigate HEAHES thermal performance on intermediate season (Oct. 10th ~ 12th Nov. 12th). When the air entering to HEAHES is the lowest $2.3^{\circ}C$, outlet air temperature from HEAHES is $15.95^{\circ}C$ through PVC pipe that buried length 60m and depth 3m. When the air entering to HEAHES is the highest $24.8^{\circ}C$, outlet air temperature from HEAHES is $22.05^{\circ}C$. During intermediate season, the HEAHES COP is 2.71 in daytime and 6.53 in evening.

Energy-aware Management in Wireless Body Area Network System

  • Zhang, Xu;Xia, Ying;Luo, Shiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.949-966
    • /
    • 2013
  • Recently, Wireless Body Area Network (WBAN) has promise to revolutionize human daily life. The need for multiple sensors and constant monitoring lead these systems to be energy hungry and expensive with short operating lifetimes. In this paper, we offer a review of existing work of WBAN and focus on energy-aware management in it. We emphasize that nodes computation, wireless communication, topology deployment and energy scavenging are main domains for making a long-lived WBAN. We study the popular power management technique Dynamic Voltage and Frequency Scaling (DVFS) and identify the impact of slack time in Dynamic Power Management (DPM), and finally propose an enhanced dynamic power management method to schedule scaled jobs at slack time with the goal of saving energy and keeping system reliability. Theoretical and experimental evaluations exhibit the effectiveness and efficiency of the proposed method.

Stability Analysis of the Inclined Pillars by Scaled Model Test (축소모형실험을 통한 편간 불일치 필라의 안정성 연구)

  • Kim, Jong-Gwan;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.508-515
    • /
    • 2016
  • In this study, we compared the stability of the pillars by using room and pillar mining method with the four models with different stiffness and pillar overlap ratio. The experimental models consist of two plaster models (overlap ratio 0%, 100%) and two cement models(overlap ratio 0%, 100%). The soft and hard rocks are modeled by plaster and cement models respectively. In these experiments, the model materials with strength values reflecting the calculated scaled factors not been used, so it is not a true scaled model test that reproduces in situ state in the laboratory. Experimental results show that the different overlap ratio pillars are one of the factors that can affect the stability of the mine.

Selecting Good Speech Features for Recognition

  • Lee, Young-Jik;Hwang, Kyu-Woong
    • ETRI Journal
    • /
    • v.18 no.1
    • /
    • pp.29-41
    • /
    • 1996
  • This paper describes a method to select a suitable feature for speech recognition using information theoretic measure. Conventional speech recognition systems heuristically choose a portion of frequency components, cepstrum, mel-cepstrum, energy, and their time differences of speech waveforms as their speech features. However, these systems never have good performance if the selected features are not suitable for speech recognition. Since the recognition rate is the only performance measure of speech recognition system, it is hard to judge how suitable the selected feature is. To solve this problem, it is essential to analyze the feature itself, and measure how good the feature itself is. Good speech features should contain all of the class-related information and as small amount of the class-irrelevant variation as possible. In this paper, we suggest a method to measure the class-related information and the amount of the class-irrelevant variation based on the Shannon's information theory. Using this method, we compare the mel-scaled FFT, cepstrum, mel-cepstrum, and wavelet features of the TIMIT speech data. The result shows that, among these features, the mel-scaled FFT is the best feature for speech recognition based on the proposed measure.

  • PDF

Design of Small-Scaled Permanent Magnet Generators for Wind Power Applications (풍력용 소용량 영구자석형 발전기의 설계)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook;You, Dae-Joon;Kyoung, Nam-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.194-196
    • /
    • 2006
  • This paper deals with design of a small-scaled permanent magnet generator (PMG) for wind power applications. First, this paper determines rated power and rated speed of the PMG from measured characteristics of wind turbines. Second, we derive analytical solutions for the open-circuit field in order to determine optimum magnet thickness and pole pitch/arc ratio. Third, on the basis of open circuit field solutions, stator magnetic circuit is designed. And then, a diameter of stator coil which agree with a required current density is calculated, and its turns are determined from the area of slot. Finally, finite element (FE) method is employed for validity of the designed PMG and, the back-emf measurements are also given to confirm the design.

  • PDF

Scaled effect correction method for the wind turbine blade with multi airfoils (다수의 익형이 적용된 풍력터빈 블레이드에 대한 축소효과 보상기법)

  • Jo, Tae-Hwan;Kim, Cheol-Wan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.494-497
    • /
    • 2009
  • 풍력터빈 블레이드 풍동시험의 경우 사용가능한 시험설비의 크기제한으로 인해 축소모델 사용이 불가피하며, 이로 인해 풍동시험에서는 실물 블레이드에 비해 10% 미만의 낮은 Re수에서 시험이 수행된다. 축소모델 블레이드 풍동시험 결과를 활용하여 실물 블레이드의 성능(토크)를 추정하기 위한 축소효과 보정기법을 2008년 제시하였으며, NREL Phase VI 모델 시험결과에 적용하였다. 당시 제시된 보정기법은 단일익형을 전체 블레이드에 사용한 사례이며 축소효과 보정을 위해 Re수에 따른 익형의 양력계수 변화만을 적용하였다. 본 논문에서는 당시 제안된 축소효과 보정기법을 익형의 양력계수 및 항력계수를 포함한 형태로 수정하였으며, 블레이드에 다수의 익형이 사용되었을 경우에 대해 확장하였다. NREL Phase VI 12% 시험모델의 경우 익형의 양력계수 기울기에 의한 보정량은 약 15% 정도이며, 항력계수 변화에 의한 보정량은 약 5% 정도로 나타났다. 블레이드에 다수의 익형이 사용되었을 경우 설계 또는 전산해석을 통해 구한 반경별 토크 함수를 적용하여 블레이드 축소효과를 보정할 수 있다.

  • PDF

Influence of the Large Scaled Wind Farm Interconnected with 154 kV Power Networks on the Distance Relay (154 kV 계통 연계 대규모 풍력단지가 송전선 거리계전기에 미치는 영향)

  • Jang, Sung-Il;Kim, Kwang-Ho;Park, Jong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.334-336
    • /
    • 2003
  • This paper describes the influences of the large scaled wind farm interconnected with 154 kV power networks on the operational characteristics of distance relay applied in the transmission line. The wind farm composed of wind turbine generators are one of the great energy sources: they can supply the power into an interconnected network not only the normal conditions, but also the fault conditions of power network. Therefore, the distance relay applied in the transmission tine may mal-operate due to the contribution of wind farm. This paper presents the operational characteristics of distance relay for the fault occurred in the transmission line interconnected with wind farm. Simulation results show that it is difficult to recognize the fault location due to the power output of wind farm.

  • PDF