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ABSTRACT

This paper describes a method to se-
lect a suitable feature for speech recogni-
tion using information theoretic measure.
Conventional speech recognition systems
heuristically choose a portion of frequency
components, cepstrum, mel-cepstrum, en-
ergy, and their time differences of speech
waveforms as their speech features. How-
ever, these systems never have good per-
formance if the selected features are not
suitable for speech recognition. Since the
recognition rate is the only performance
measure of speech recognition system, it is
hard to judge how suitable the selected fea-
ture is. To solve this problem, it is essential
to analyze the feature itself, and measure
how good the feature itself is. Good speech
features should contain all of the class-
related information and as small amount
of the class-irrelevant variation as possi-
ble. In this paper, we suggest a method to
measure the class-related information and
the amount of the class-irrelevant variation
based on the Shannon’s information theory.
Using this method, we compare the mel-
scaled FFT, cepstrum, mel-cepstrum, and
wavelet features of the TIMIT speech data.
The result shows that, among these features,
the mel-scaled FFT is the best feature for
speech recognition based on the proposed
measure.
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I. INTRODUCTION

For three decades since 1960’s, various

speech recognition methods have been devel-

oped to recognize isolated words and contin-

uous speech. They are dynamic time warping

method [1], [2], [3], and hidden Markov model

[4], [5], [6], [7], respectively. These meth-

ods have found their own application such as

voice-controlled computers and automatic re-

sponse systems.

Recently, spontaneous speech recognition

has become one of the major research areas

since it handles really natural human voice.

There are uncertain pronunciations, varying

speed, and incomplete sentences in sponta-

neous speech, which make the recognition

problem difficult to solve. Currently, the best

word recognition rate is 70 % for limited do-

main [8], 50 % for multiple domains [9], which

is far from user requirements.

Good feature extraction has been an im-

portant research topic in speech recognition

area. There has been many kinds of features

for speech recognition. Formants and linear

prediction parameters are such features in ear-

lier days. Cepstrum [10] has been widely used

since it is free from pitch variation. To incor-

porate the frequency response of human audi-

tory system, mel-scaling was introduced [11].

Recently, the linear discriminant analysis [12]

of features is commonly used in most speech

recognition systems since it efficiently reduce

the dimension of feature parameters.

Feature extraction is in the beginning stage

of speech recognition. If this procedure loses

any small portion of the class-related informa-

tion, there is no way to recover it in the later

stages. One usually tests various speech fea-

tures on the same recognition system and com-

pares the corresponding recognition ratio to se-

lect a good feature. Even in this case, differ-

ent architectures of classifiers and/or the post-

processors may give different results. For ab-

solute comparison, we need to compare speech

features themselves.

One can use the linear separability or the

Fisher criterion [13], [14] for this purpose. The

linear separability is the maximum probabil-

ity of classification when discriminating the

patterns with hyperplanes. This measure per-

forms well in two-class problems when the pat-

terns are clustered in convex regions. How-

ever, speech patterns are multi-class and are

not well clustered. The Fisher criterion is the

ratio of the average distance among classes to

the average of the variations in each class. It

has a critical drawback that it cannot measure

how much the classes overlap.

In this paper, we propose a method to select

a good speech feature for recognition. We ap-

ply Shannon’s information theory [15] to build

the method. The proposed method is applica-

ble to multi-class, non-convex, and overlapped

patterns such as speech signals and speech fea-

tures. Bichel and Seitz [16] have proposed

a method to measure the performance of hid-

den and output units of feedforward neural

networks using the conditional class entropy

when the patterns are binary vectors. Our
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method is an extension of this method to con-

tinuous vectors.

This paper is organized as follows: In sec-

tion II we explain the linear separability, the

Fisher criterion, and the information theoretic

measure, and compare their capabilities. In

section III, we apply this method to TIMIT

speech data to select a good speech feature, and

section IV concludes this paper.

II. COMPARISON OF
MEASURES

In this section, we briefly introduce the

multi-class versions of the linear separability,

the Fisher criterion, and the proposed measure,

and compare their complexity measuring capa-

bilities.

1. The Complexity Measures of
Multi-class Distributions

A. The Linear Separability

The linear separability [14] is the maxi-

mum probability of correct classification when

discriminating the pattern distribution with hy-

perplanes. In two-class problems, it repre-

sents the probability of overlapping if each

class is distributed in convex region. In or-

der to measure the linear separability of the

multi-class patterns that have non-convex dis-

tribution, one can use a single layer percep-

tron [17]. A single layer perceptron divides the

pattern space into a finite number of classes.

Training a single layer perceptron, we can find

the hyperplanes that minimize the total classi-

fication error. Figure 1 shows such examples.

The linear separability clearly shows whether

the two convex-distributed classes overlap as

shown in Fig. 1(a). However, it fails to show

the overlapping factor if the number of classes

is more than two as shown in Fig. 1(b). It

also fails on two non-convex distributions as

shown in Fig. 1(c). In such cases, training a

single-layer perceptron gives the hyperplanes

that minimize the total error with respect to all

the classes.

Fig. 1. Property of the linear separability: (a) Two

convex-distributed patterns, (b) three convex-

distributed patterns, and (c) two non-convex-

distributed patterns.

In this paper, we define the linear separa-

bility as the recognition ratio of a single-layer

perceptron after training. Therefore, the linear

separability is

ls
4D Ncorrect

P
; (1)

where P is the number of the whole patterns

and Ncorrect is the number of correctly classi-

fied ones.

B. The Fisher Criterion

The Fisher criterion [13] is a measure that
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indicates how much the class distributions are
separated. A multi-class version of the Fisher
criterion is

f c D
PM

mD1 Pmk�m��0 k2PM
mD1 Pm�m

2
; (2)

where M is the number of classes and Pm is the

probability of the mth class. Here, �m is the

mean and�m
2 is the variance of the patterns as-

signed to the mth class, and�0D 1
M

PM
mD1�m .

When the patterns are multidimensional vec-

tors, we can use the trace of the sample covari-

ance matrix instead of the variance. It is easy

to see that this value becomes large when the

distances among the centers of classes are large

and/or the variances of classes are small.

C. The Information Theoretic Measure

The main idea of the information theoretic

measure is to calculate the class-related infor-

mation content and the class-irrelevant varia-

tion from the pattern distribution using Shan-

non’s information theory [15].

To understand this concept, we need to de-

fine two partitions, the spatial partition and the

class partition. The spatial partition consists

of a finite number of hypercubes that cover the

whole patterns. To define the spatial partition,

we first find the smallest rectangular hyper-

hexahedron in the subspace that includes the

whole patterns. Then, we divide it into given

number of hypercubes. These hypercubes

form the spatial partition S as shown in Fig. 2.

The class partition C divides all patterns into

each class. For phoneme recognition, for ex-

ample, all Korean speech segments are natu-

rally partitioned into 46 phoneme classes.

Fig. 2. An example of the two-dimensional spatial par-

tition S. Here, it is drawn in the solid line. The

largest dotted rectangle is the smallest rectangular

hyper-hexahedron that includes the whole pattern

distribution. C = fC1;C2; : : : ;CM g is the class

partition.

We form these two partitions on a feature

vector set to calculate the class-related infor-

mation content and the class-irrelevant varia-

tion. We can formulate these concepts as fol-

lows:

A spatial partition SDfS1; S2; : : : ; SN g of
a speech feature space E is a collection of hy-
percubes such that

SN
nD1 Sn D E, Si \ S j = �,

i 6D j. In this case, the entropy H.S/ of the spa-
tial partition S is [15]

H.S/D�
NX

nD1

P.Sn / log P.Sn /; (3)

where P.Sn / is the probability that speech fea-

tures fall into the hypercube Sn . When the Eu-

clidean distance between two features is small,

the features are more likely to appear in the

same hypercube of S, resulting in small H.S/.

While the distance is large, they are more
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likely to occur in different hypercubes of S, re-

sulting in large H.S/. Thus, H.S/ indicates

relative scatter of the whole features.
Consider the class partition C = fC1, C2,

: : : , CMg in the same speech feature space E.
The conditional entropy H.SjC/ of C assum-
ing the spatial partition S is

H.SjC/D�
MX

mD1

P.Cm /

NX
nD1

P.Sn jCm /

� log P.Sn jCm /: (4)

Since
PN

nD1 P.Sn jCm / log P.Sn jCm / is the

relative variation of the class Cm, H.SjC/ is

the average relative variation of all classes.
The mutual information of the spatial par-

tition S and the class partition C is

I.SIC/DH.S/�H.SjC/: (5)

When the features of different classes occur in

the same element of S, H.S/ decreases, result-

ing in reduction of I.SIC/. When there is no

element of S that contains the features of dif-

ferent classes, I.SIC/ has the maximum value

of H.C/. Thus, we can use I.SIC/ to deter-

mine whether the classes overlap or not.
We have shown in Appendix that, when-

ever the classes overlap,

I.SIC/<H.C/ (6)

and I.SIC/ decreases more if the shape of
overlapping becomes more complicated. In
particular, if P.Cm ; Sn / = P.Cm /P.Sn /, m = 1,
2, : : : , M, n = 1, 2, : : : , N only in the overlap-
ping area,

I.SIC/D .1�ı/H.C/; (7)

where ı is the probability of overlapping.
When the whole features are distributed

uniformly in all the hypercubes of S and all
the classes do not overlap, H.SjC/ has a max-
imum value of

Hmax D log N�H.C/; (8)

where N is the number of hypercubes.
Using these properties, we define the inter-

class separability s and the intra-class variation
v as

s
4D I.SIC/

H.C/
; v

4D H.SjC/
Hmax

: (9)

The inter-class separability s represents

whether the distributions of the classes over-

lap. If s is 1, that is, I.SIC/ is equal to H.C/,

the classes do not overlap, even for non-

convex multi-class distributions. When s is

less than 1, the classes are mingled with each

other. The intra-class variation v indicates the

relative size of the class-irrelevant variation

within each class. If v is 1, each feature

occupies different hypercubes of S, which is

the most scattered case. If v is small, most

features fall into small number of hypercubes.

Thus, v represents the degree of dispersion

of features within the same class. Clearly s

should be 1 and v is small to be a good feature.

2. Comparison on the Complexity-
measuring Capability

In this section, we discuss the relations

among the above criteria and compare their

properties.

As mentioned in the previous section, both

the linear separability ls and the inter-class
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separability s measure the degree of separation

of the classes. The parameter ls represents the

complexity of given features in the extent that

a class is separable from the others using a hy-

perplane. In most cases, however, ls cannot

represent whether the classes overlap or not.

For example, when two classes do not over-

lap and are not linearly separable as shown in

Fig. 1(c), ls is less than 1, while the s is 1.

We can illustrate the difference between ls

and s in Fig. 3 more precisely. In Fig. 3(a) and

(b), the areas of the class A and the class B

are unchanged. We can classify the two classes

in (b) using some nonlinear classifier, but we

cannot have 100 % classification in (a). The s

of (a) is less than 1 since two classes overlap,

while it is 1 in (b). However, the ls is the same

value in both (a) and (b). Thus, the s can repre-

sent the overlapping factor of multi-class pat-

terns distributed in non-convex region.

Fig. 3. The comparison of the linear separability and the

inter-class separability. In (a) and (b), the areas of

the class A and the class B are unchanged. The ls

is less than 1 in both (a) and (b). The s is less than

1 in (a) while it is 1 in (b).

The Fisher criterion f c and the intra-class

variation v are the measures that reflect the de-

gree of dispersion of the pattern distribution.

The Fisher criterion has the same value under

the transformations such as translation, rota-

tion and magnification since the numerator and

the denominator in (2) change with the same

factor. The intra-class variation represents rel-

ative scatter of patterns. It is also invariant un-

der similar transformation as shown in Fig. 4.

Fig. 4. Invariance of the intra-class variation and the

Fisher criterion. The pattern distribution (a) is ro-

tated, magnified, and flipped over, resulting in (b).

They have the same values of the intra-class vari-

ation as well as the Fisher criterion.

However, the Fisher criterion has a criti-

cal drawback that it cannot indicate the over-

lapping factor. Fig. 5 shows such an example.

In Fig. 5(a) and (b), the distance between the

centers of two classes and the variance of each

class remain equal. When the two classes are

distributed uniformly in the rectangles, the f c



ETRI Journal, volume 18, number 1, April 1996 Youngjik Lee and Kyu-Woong Hwang 35

has the same value as 1.8808 in both (a) and

(b). However, the two classes overlap in (a)

while they do not in (b). In other words, the

f c cannot represent the difference of the com-

plexity in this case. In contrast, the s is 1.0 in

(a) but it is 0.6666 in (b).

Fig. 5. The comparison of the Fisher criterion and the

inter-class separability. When two distributions

are uniform, the distance between the two class

centers and the variance of each class remain

equal. Thus, the f c is 1.8808 in both (a) and (b),

However, the s is 1.0 in (a) and 0.6666 in (b).

3. Practical Considerations

Up to this point, we have assumed that the

feature distribution is available. However, in

real situations, only a finite number of sam-

ples are available. In this case, Hmax in (8) can

be replaced by log P�H.C/, where P is the

number of samples, provided that N> P. The

number of samples should be large enough to

represent the feature distribution fairly well.

The number of hypercubes N in the spa-

tial partition S plays an important role in the

proposed method. If N is too small, features

from different classes may fall into the same

hypercube of S since the volume of the hyper-

cube is large. In this case, s becomes less than

1 even though the classes do not overlap. Thus,

N should be large so that the size of the hyper-

cube is comparable to the smallest gap between

the classes. If N is too large, all features may

fall into distinct hypercubes since the volume

of the hypercube is very small. In this case, s

is 1, but v is also 1. Thus, N should not be too

large so that the size of the hypercube is larger

than the smallest gap between the feature sam-

ples. To select a good speech feature, we use

N from 103 to 1030 when the number of sample

is 700,000 - 800,000 and the number of class is

61.

To calculate (4), it is necessary to estimate

P.Sn jCm / for all n and m. If N is large, it is

impossible to store all of these values. If the

elements of the pattern set are statistically in-

dependent, the total entropy is just a sum of the

entropies of all elements. When all the classes

are Gaussian random vectors, the isometric

transformation1 under the eigenvector matrix

makes the resulting elements to be statistically

independent. Thus, the total entropy can be

calculated by adding entropy of each element,

which needs very small amount of memory

and processing time. This process is mathe-

matically equivalent to the linear discriminant

analysis (LDA) [18] that is frequently used in

speech recognition.

To decide the number N of the hypercubes

in S, we follow the next steps.

1A transformation T is called isometric if d.x; y/ =

d.Tx;Ty/ for all elements x and y where d.x; y/ denotes

the distance between x and y.
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1. Extract feature vectors from all speech

samples.

2. Transform all the feature vectors us-

ing the eigenvector matrix of the sam-

ple covariance matrix into new vectors,

namely, aligned vectors.

3. Set the size of the hypercube to ˛.

4. Since the eigenvalue represents the vari-

ance of the corresponding element, we

calculate the corresponding standard de-

viation �.

5. Divide 6� by ˛. If it is greater than 1,

divide that element into d6�
˛
e. If it is less

than 1, do not divide that element.

6. Multiply all d6�
˛
e for each element to get

the total number of hypercubes N.

After finding N, we estimate the proba-

bility that the corresponding element of the

aligned vector falls into each sector, and calcu-

late the entropy.

We apply these criteria to various speech

features to select good features for speech

recognition in the next section.

III. ANALYSIS OF SPEECH
FEATURES FOR
RECOGNITION

We apply the proposed method to vari-

ous speech features extracted from the phonet-

ically labeled TIMIT speech data. The total

number of frame is 782,253 and the number

of classes is 61. In 92,327 frames out of the

total frames, there are more than a class in a

frame. In this case, we assign a class with the

largest time portion to incorporate coarticula-

tion effect. We also measure the same values

from 689,926 unoverlapped frames for clear

performance comparison. Fig. 6 shows the his-

togram of each phoneme for all frames and

the unoverlapped frames. The two distribu-

tions are very similar in shape, meaning that

the measurement on the unoverlapped frame is

not far from the measurement on all frames.

Fig. 6. Histogram of phoneme classes for overlappedand

unoverlapped frames.

The candidates are cepstrum, mel-

cepstrum, and mel-scaled FFT [19] features

that are most frequently used in speech recog-

nition. We also extract an energy-normalized

filter-bank-type wavelet feature.

To extract cepstrum, mel-cepstrum, and

mel-scaled FFT, we extract 16-order feature

from 20 msec speech signal frame with Ham-

ming window. The frame rate is 10 msec. To
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extract wavelet features, we use a Gaussian

window.

Fig. 7 shows the shape of the mother

wavelet of size 20 msec. To construct the

filter-bank-type wavelet feature, we use differ-

ent analysis window width for each element.

In this case, We extract one feature using the

mother wavelet in 20 msec window, one fea-

ture using the 1
161=15 daughter wavelet, one fea-

ture using the 1
162=15 daughter wavelet, : : : one

feature using the 1
1615=15 daughter wavelet in 5

msec window, resulting in 16 dimensional vec-

tor.

Fig. 7. The shape of mother wavelet.

We transform all the feature vectors into

aligned vectors using the eigenvector matrix of

the sample covariance matrix.

Fig. 8 shows the inter-class separability of

all the features as a function of the number N

of the hypercubes in S. Clearly, the mel-scale

FFT, and mel-scale cepstrum feature are bet-

ter than the cepstrum and wavelet feature since

they reach s = 1 at smaller N.

Fig. 9 shows the intra-class variation of all

Fig. 8. The inter-class separability of various speech fea-

tures vs. the number of hypercubes.

Fig. 9. The intra-class variation of various speech fea-

tures vs. the number of hypercubes.

the features as a function of N. Interestingly,

the wavelet feature shows an opposite trend

in the comparison between the overlapped and

unoverlapped data set. The intra-class varia-

tions of the other features on the overlapped

data set is larger than those on the unover-

lapped data set. This can be explained as fol-

lows: The conditional entropy H.SjC/ in (9)

does not decrease much even when the over-

lapped data samples are excluded, while Hmax

decreases as the number of samples decreases.
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Fig. 10. The intra-class variation vs. the inter-class sep-

arability.

We show the relation between the inter-

class separability s and the intra-class varia-

tion v of different number of hypercubes in

Fig. 10. Clearly, all features hit the point (1,

1). This means that all classes can be separated

only when every sample points fall into distinct

hypercubes. Thus, we need more samples to

get more precise result. The mel-scaled FFT

and the mel-cepstrum are good speech features

since their inter-class separabilities become 1

with smaller number of N and their intra-class

variation is relatively smaller than the other

features. However, we can easily see that the

mel-scaled FFT is slightly better than the mel-

cepstrum since the inter-class separability is

slightly larger.

Summarizing all the above results, we can

say that the mel-scaled FFT feature is good for

speech recognition.

IV. CONCLUSION

In this paper, we proposed a method to

select a good speech feature for recognition.

We introduce the linear separability and the

Fisher criterion, and propose a new method us-

ing Shannon’s information theory. We showed

that the proposed method is applicable to

multi-class non-convex distributions including

the speech features, while the other two meth-

ods are not. We compared cepstrum, mel-

cepstrum, mel-scaled spectrum, and a wavelet

feature of the TIMIT data. The result showed

that the mel-scaled FFT feature is the best fea-

ture for speech recognition among them.
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APPENDIX

In this Appendix, we prove (6) and (7). To-
ward this purpose, let

3mDfn j Sn�Cmg; mD1;2; : : : ;M;

3cDfn j Sn contains elements of more than

two classesg;

and assume that 3c is not empty. Then, the
mutual information is

I.SIC/DH.C/�H.CjS/
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DH.C/�
NX

nD1

P.Sn /H.CjSn /:

But

H.CjSn /D

8>>>>>>>>><>>>>>>>>>:

0

if n23m for some m

�
MX

mD1

P.Cm jSn/ log P.Cm jSn /

if n23c

:

Thus,

I.SIC/DH.C/C
X

n23c

P.Sn /

MX
mD1

P.Cm jSn /

� log P.Cm jSn/: (10)

Since H.CjSn / > 0 for n 2 3c and 3c is
not empty,

I.SIC/<H.C/

which is the case when the classes overlap.

If the probability of overlapping increases,

one can say that the pattern set becomes more

complicated. In this case,
P

n23c
P.Sn / in-

creases, and I.SIC/ decreases. When P.Sn /

is fixed, one can say that the pattern set be-

comes more complicated if the number of

classes in a hypercube increases. In this case,

I.SIC/ decreases more since H.CjSn / be-

come larger for n 2 3c. Based on these facts,

we argue that I.SIC/ decreases more if the

shape of overlapping becomes more compli-

cated.
In particular, if P.Cm ; Sn / = P.Cm /P.Sn /,

m = 1, 2, : : : , M for n23c , it is easy to see that

H.CjSn /DH.C/; n23c: (11)

With (11) in (10), we have

I.SIC/D [1�
X

n23c

P.Sn /] H.C/;

where
P

n23c
P.Sn / is the probability of over-

lapping.
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