• 제목/요약/키워드: scale down

검색결과 840건 처리시간 0.021초

가공경로가 밀링가공면의 기하학적 특성에 미치는 영향 (Effects of the Tool Path on the Geometric Characteristics of Milled Surface)

  • 박문진;김강
    • 한국정밀공학회지
    • /
    • 제15권6호
    • /
    • pp.58-63
    • /
    • 1998
  • There are lots of factors that are related to the geometric characteristics of machined surface. Among them, the tool path and milling mode (up cut milling or down cut milling) are the easiest controllable machining conditions. Thus, the first objective of this research is to study the effects of them on the milled surface that is generated by an end milling tool. To get precision parts, not only the machining process but also the measurement of geometric tolerance is important. But, this measurement requires a lot of time, because the infinite surface points must be measured in the ideal case. So, the second objective is to propose a simple flatness measurement method that can be available instead of the 3-D geometric tolerance measurement method, using a scale factor and characterized points. Finally, it is also shown that the possibility of flatness improvement by shifting the consecutive fine cutting tool path as compared with the last rough cutting tool path.

  • PDF

Effect of Matrix Viscosity on Clay Dispersion in Preparation of Polymer/Organoclay Nanocomposites

  • Ko, Moon-Bae;Jho, Jae-Young;Jo, Won-Ho;Lee, Moo-Sung
    • Fibers and Polymers
    • /
    • 제3권3호
    • /
    • pp.103-108
    • /
    • 2002
  • The viscosity effect of matrix polymer on melt exfoliation behavior of an organoclay in poly($\varepsilon$-caprolactone) (PCL) was investigated. The viscosity of matrix polymer was controlled by changing the molecular weight of poly($\varepsilon$-eaprolactone), the processing temperature, and the rotor speed of a mini-molder. Applied shear stress facilitates the diffusion of polymer chains into the gallery of silicate layers by breaking silicate agglomerates down into smaller primary particles. When the viscosity of PCL is lower, silicate agglomerates are not perfectly broken into smaller primary particles. At higher viscosity, all of silicate agglomerates are broken down into primary particles, and finally into smaller nano-scale building blocks. It was also found that the degree of exfoliation of silicate layers is dependent upon not only the viscosity of matrix but thermodynamic variables.

MODAL CHARACTERISTIC ANALYSIS OF THE APR1400 NUCLEAR REACTOR INTERNALS FOR SEISMIC ANALYSIS

  • Park, Jong-Beom;Choi, Youngin;Lee, Sang-Jeong;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Park, Chan-Il
    • Nuclear Engineering and Technology
    • /
    • 제46권5호
    • /
    • pp.689-698
    • /
    • 2014
  • Reactor internals are sensitive to dynamic loads such as earthquakes and flow induced vibration. Thus, it is essential to identify the dynamic characteristics to evaluate the seismic integrity of the structures. However, a full-sized system is too large to perform modal experiments, making it difficult to extract data on its modal characteristics. In this research, we constructed a finite element model of the APR1400 reactor internals to identify their modal characteristics. The commercial reactor was selected to reflect the actual boundary conditions. Our FE model was constructed based on scale-similarity analysis and fluid-structure interaction investigations using a fabricated scaled-down model.

A Compensator to Advance Gyro-Free INS Precision

  • Hung Chao-Yu;Fang Chun-Min;Lee Sou-Chen
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권3호
    • /
    • pp.351-358
    • /
    • 2006
  • The proposed inertial measurement unit (IMU) is composed of accelerometers only. It can determine a vehicle's position and attitude, which is the Gyro-free INS. The Gyro-free INS error is deeply affected by the sensor bias, scale factor and misalignment. However, these parameters can be obtained in the laboratory. After these misalignments are corrected, the Gyro-free strap-down INS could be more accurate. This paper presents a compensator design for the strap-down six-accelerometer INS to correct misalignment. A calibration experiment is taken to get the error parameters. A simulation results show that it will decrease the INS error to enhance the performance after compensation.

고속전철 모의시험 장치 (A Scale-down Simulator for High-speed Railway Train)

  • 류홍제;김종수;임근희;김용주;원충연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1140-1142
    • /
    • 2000
  • This paper describes a down-scaled model for a high-speed railway train. The propulsion system of simulator consists of four line-side converters four induction motors driven by two inverters, an eddy current braking system, two dynamic braking systems. The control algorithm of traction and braking including anti-skid control can be developed using the simulator. Simulator design procedure. control algorithm and some experimental waveforms are presented in this paper.

  • PDF

순산소를 이용한 유리 용해로의 연소특성에 관한 실험적 연구 (Experimental study on combustion characteristics of oxy-fuel glass melting furnace)

  • 김세원;안재현;김용모;신명철
    • 한국연소학회지
    • /
    • 제9권1호
    • /
    • pp.1-10
    • /
    • 2004
  • The results of a series of experiments executed by using two pilot-scale oxy-fuel burners are presented. The oxy-fuel burners are designed for maximum capacity of 50,000kcal/hr, 200,000kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, and swirl vane angle on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple at various points of the flame. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and momentum. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, optimum burner type, excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.

  • PDF

A novel approach for designing of variability aware low-power logic gates

  • Sharma, Vijay Kumar
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.491-503
    • /
    • 2022
  • Metal-oxide-semiconductor field-effect transistors (MOSFETs) are continuously scaling down in the nanoscale region to improve the functionality of integrated circuits. The scaling down of MOSFET devices causes short-channel effects in the nanoscale region. In nanoscale region, leakage current components are increasing, resulting in substantial power dissipation. Very large-scale integration designers are constantly exploring different effective methods of mitigating the power dissipation. In this study, a transistor-level input-controlled stacking (ICS) approach is proposed for minimizing significant power dissipation. A low-power ICS approach is extensively discussed to verify its importance in low-power applications. Circuit reliability is monitored for process and voltage and temperature variations. The ICS approach is designed and simulated using Cadence's tools and compared with existing low-power and high-speed techniques at a 22-nm technology node. The ICS approach decreases power dissipation by 84.95% at a cost of 5.89 times increase in propagation delay, and improves energy dissipation reliability by 82.54% compared with conventional circuit for a ring oscillator comprising 5-inverters.

밀기 증후군이 있는 편마비환자의 물리치료 - 사례연구 (Physiotherapy For Pusher Behaviour in A Patient With Post-Stroke Hemiplegia - Case Report)

  • 김용선
    • 대한물리치료과학회지
    • /
    • 제14권1_4호
    • /
    • pp.55-60
    • /
    • 2007
  • The purpose of this case report is to investigate whether an attempt to hold the repeated upright posture under blocking the patient's vision affects the deficits to push away from the paralytic side and the relapse time from down to stand up position without push away in patients with hemiplegia with pusher syndrome. Two hemiplegic patients with pusher syndrome were assessed. The task was performed 4 times per day for 6 weeks. The modified barthel index (MBI) was performed to assess activities of daily living (ADL). For assessing balance, the "balanced sitting" and "sit to stand" are analyzed using by modified motor assessment scale (MMAS). The scale for contraversive pushing (SCP) was used for determination of push away from paralyzed side. MBI, MMAS and SCP were assessed before and after trial of the task. In patient 1, total score of the scale is 0 in sitting posture and standing posture within 3 weeks and 4 weeks, respectively, In patient 2, total score of the scale is 0 in sitting posture and standing posture within 4 weeks and 6 weeks, respectively. These results demonstrated that pusher syndrome was completely resolved in at least 6 weeks. Our findings indicate that this physical therapy seems to be relevant for the hemiplegic patients with pusher syndrome.

  • PDF

전산유체역학을 이용한 풍력터빈 축소효과 수치해석 (Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics)

  • 박영민;장병희
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.28-36
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using commercial CFD code, Fluent. For the numerical analysis of wind turbine, the three dimensional Navier-Stokes solver with various turbulence models was tested. As a turbulence mode, the realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with its wind tunnel test and blind test data. Using the present method, numerical simulations for various size of wind tunnel models were carried out and characteristics were analyzed in detail. For wind tunnel test model, the size of nacelle may not be scaled down precisely because of available motor. The effect of nacelle size was also computed and analyzed though CFD simulation. The present results showed the good correlations in pre-stall region but much to be improved in post-stall region. In 2006 and 2007, the performance and the scale effect of standard wind turbine model will be tested in KARI(Korea Aerospace Research Institute) LSWT(Low Speed Wind Tunnel) and the present results will be validated with the wind tunnel data.

  • PDF

미세 연소기 개발(I) - 소형 연소기 환경에서의 연소 특성 - (Design and Development of Micro Combustor (I) - Combustion Characteristics in Scale-Downed Combustor -)

  • 이대훈;최권형;권세진
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.74-81
    • /
    • 2002
  • Combustion phenomena in a sub-millimeter scale combustor have been investigated. To evaluate scale effect on flame propagation characteristics, a cylindrical combustion chamber with variable depth was built in-house. The combustor was charged with premixed gas of hydrogen and air and ignited electronically. A piezo electric pressure transducer recorded transient pressure after the ignition. Measurements were made at different test conditions specified with chamber depth and initial pressure as parameters. Visual observation was made through a quartz glass window on top side of the combustion chamber using high speed digital video camera. From the pressure data, available work was estimated and compared with energy input required for stable ignition. The preliminary results suggested that the net thermal energy release is sufficient to generate power and enables a combustor of the size in the present study to be used as the energy source of a micro power devices .