• Title/Summary/Keyword: saturation flux density

Search Result 58, Processing Time 0.034 seconds

Influence of Composition on Soft Magnetic Properties of As-Deposited Fe-Sm-O Thin Films (조성변화에 따른 Fe-Sm-O계 박막의 연자기적 성질)

  • Yoon, T.S.;Cho, W.S.;Koo, E.S.;Li, Ying;Park, J.B.;Kim, C.O.
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.39-43
    • /
    • 2001
  • Nanocrystalline Fe-Sm-O thin films were prepared by RF magnetron reactive sputtering method in $Ar+O_2$mixed atmosphere with the $O_2$content of 5%. The compositions of the thin films were changed by changing the number of $Sm_2O_3$ chips. The best soft magnetic properties of the thin film with the composition of $Fe_{83.4}Sm_{3.4}O_{13.2}$ were saturation flux density of 18 kG, coercivity of 0.82 Oe and effective permeability about 2,600 at 0.5~100 MHz, respectively. The electrical resistivity of Fe-Sm-O thin films was increased with increasing the amount of Sm and O elements which combined each other, the electrical resistivity of$Fe_{83.4}Sm_{3.4}O_{13.2}$ thin film was $130{\mu}{\Omega}cm$. In case of the small amount of Sm and O elements, the microstructures of Fe-Sm-O thin films showed a precipitated phase of $Sm_2O_3$ on the ${\alpha}-Fe$ phase. With the increase of the amount of Sm and O elements, the microstructures of the Fe- Sm-O thin films were changed into a mixed structure of ${\alpha}-Fe$ crystal-phase and Sm-oxide amorphous phase. The Fe-Sm-O thin films with Fe content in the range of 72~94 at% exhibited the quality factor (Q = $\mu$′/$\mu$") of 7~75 up to 50 MHz.

  • PDF

Germination Characteristics of Medicinal Crop Adenophora triphylla var. japonica Hara as Affected by Seed Disinfection and Light Quality (종자 소독처리와 광질에 따른 약용작물 잔대 종자의 발아특성)

  • Lee, Hye Ri;Kim, Hyeon Min;Jeong, Hyeon Woo;Oh, Myung Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.404-410
    • /
    • 2019
  • This study was performed to investigate the seed morphological characteristics and dormancy type of Adenophora triphylla var. japonica Hara that high valued medicinal crop and to select the disinfectants and light quality for germination rate improvement. The seed disinfection was carried out using distilled water (control), NaClO 4%, $H_2O_2$ 4%, and benomyl $500mg{\cdot}L^{-1}$. The light quality treatments were set to dark condition (control I), fluorescent lamp (control II), LEDs [red, blue, green, and combined RB LEDs (red:blue = 8:2, 6:4, 4:6, 2:8)] with a photoperiod of 12/12 (light/dark) and light intensity $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux density. Although the Adenophora triphylla var. japonica Hara seed was an underdeveloped embryo (E) and seed (S) with an embryo (E):seed (S) ratio of 0.4, it is germinated within 30 days, and seed moisture saturation was reached within 6 hours after immersion. After seed disinfection, the mold incidence rate was significantly inhibited, and the final germination rate was the highest at 87% in the benomyl seed disinfection. The final germination rate was the highest at 92% in the red light, and the mean daily germination was the lowest in the R2B8. Therefore, there is almost no dormancy in the Adenophora triphylla var. japonica Hara seed, and benomyl seed disinfectant and red light were effective in the improvement of germination rate. So it is considered to the high value of use for medicinal crop Adenophora triphylla var. japonica Hara cultivation.

Effects of Water Temperature, Salinity and Irradiance on the Growth of the Toxic Dinoflagellate, Gymnodinium catenatum (Graham) Isolated from Yeosuhae Bay, Korea (여수해만에서 분리한 유독 와편모조류, Gymnodinium catenatum (Graham)의 성장에 미치는 수온, 염분과 광 조건)

  • Oh, Seok-Jin;Yoon, Yang-Ho
    • ALGAE
    • /
    • v.19 no.4
    • /
    • pp.293-301
    • /
    • 2004
  • A chain-forming toxic din flagellate, Gymnodinium catenatum (Graham) was known as a paralytic toxin-producer among Gymnodinoid group. In the study, the effects of water temperature, salinity and irradiance on the growth of G. catenatum isolated from Yeosuhae Bay, Korea were investigated. Water temperature range in which G. catenatum showed specific growth rate higher than 0.3 day$^{-1}$ were above about 18${^{\circ}C}$. However, salinity did not have such an effect on growth of G. catenatum. The maximum growth rate (0.5 day$^{-1}$) was obtained at 25${^{\circ}C}$ and 30 psu. The specific growth rate (u) expressed as a polynomial equation as functions of temperature (T; ${^{\circ}C}$) and salinity (S; psu) was $\mu$ = 0.005·T$^2$ - 0.0001164 T$^3$ - 0.063-S + 0.005-S$^2$ - 0.00007608-S$^3$ - 0.003-T-S + 0.00005308-T$^2$-S. Thus, in aspects of water temperature and salinity, the species may be expected to survive in most Korean coastal waters from early summer to autumn. The irradiance-growth curve was described as = 0.16 (I - 10.4)/(1 + 21.8) at 18${^{\circ}C}$ and 30 psu, indicating a half-saturation (Ks) photon flux density (PFD) of 42.6$\mu$mol m$^{-2}s^{-1}$ and compensation PFD (I$_0$) of 10.4$\mu$mol m$^{-2}s^{-1}$. These characteristic responses to irradiance suggest that G. catenatum can reside at the sub-surface.

The Study on the Crystal Growing of Mn-Zn Ferrite Single Crystals by Floating Zone Method (Floating Zone법에 의한 Mn-Zn Ferrite 단결정성장에 관한 연구)

  • 정재우;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.1
    • /
    • pp.10-19
    • /
    • 1992
  • Mn - Zn Ferrite has physical properties of the high initial permeability, saturation magnetic flux density, and low loss factor as a representative magnetic material of soft ferrites, in addition the mechanical property is excellent as a single crystal. Therefore it is important electronic components and used for VTR Head. Mn - Zn Ferrite single crystals with the diameter 8mm were grown in atmosphere mixed with $O_2$ and Ar gas by the Floating Zone(FZ) method that impurities can not be incorporated to the crystals because of not-using the crucible to put in the melt, and the sharp temperature gradient results from making a focus at one point utilizing the infrared ray emitted from the halogen lamp as a heat source. During the crystal growing, the highest temperature of melting area was maintained to be $1650^{\circ}C$, growth rate and rotation rate were 10 mm/hr, 20 rpm respectively. The phases and the growth directions of crystals were determined from the analysis of X RD patterns, Laue, TEM diffraction patterns and etch pit shapes were observed by the optical microscope through the chemical etching. The corelation of optimum conditions for acquiring the better crystals was found out with the growth rate, the length and diameter of melt at the interface according to the diameter of feed rod, and the patterns of growing interface also studied.

  • PDF

Effects of Optical Characteristics on the Growth of Benthic Microalga, Nitzschia sp. and Its Growth Kinetics of Phosphate for Bioremediation (생물적 환경정화를 위한 부착미세조류 Nitzschia sp.의 생장에 미치는 광학적 특성과 그에 따른 인산염 성장 동력학)

  • Oh, Seok-Jin;Kang, In-Seok;Yoon, Yang-Ho;Yang, Han-Soeb;Park, Jong-Sick
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.205-212
    • /
    • 2009
  • To suggest possible to bioremediation by benthic microalgae Nitzschia sp. isolated from the Jinhae Bay, the studies investigated the effects o flight quality and quantity on the growth of Nitzschia sp. and its growth kinetics for phosphate investigated. The Nitzschia sp. was cultured under blue (450 nm), yellow (590 nm) and red wavelength (650 nm) using light emitting diode (LED) and mixed wavelengths using a fluorescent lamp. The maximum specific growth rate showed the Nitzschia sp. under blue wavelength, although photoinhibition was observed above $100\;{\mu}mol\;m^{-2}\;s^{-1}$. Mixed wavelengths were also observed by decreasing the maximum cell density from high irradiances (>$100\;{\mu}mol$ photons $m^{-2}\;s^{-1}$). The compensation photon flux density ($I_0$) calculated from the mixed wavelengths equated to a depth of 4-10 m in Jinhae Bay, and was lower in the summer season than the depth due to suspended matter (ca. 4 m). Thus, the suitable depth for maximum growth of Nitzschia sp. might be extremely limited. In the growth kinetics for phosphate, half-saturation constant ($K_s$) was similar among different wavelengths, although the maximum growth rate was varied among different wavelengths. Because the $K_s$ was high than that of the phytoplankton, Nitzschia sp. might have adapted to the high nutrient concentrations, and have effective nutrient storage in the cell quota. Thus, Nitzschia sp. may be a useful species for bioremediation of the benthic layer in polluted inner bays by means of irradiated specific wavelength as blue.

Photosynthetic characteristics and growth analysis of Angelica gigas according to different hydroponics methods (당귀의 광합성 특성과 수경재배 방식에 따른 생장 분석)

  • Park, Jong-Seok;Kim, Sung-Jin;Kim, Hong-Ju;Choi, Jong-Myung;Lee, Gong-In
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.321-326
    • /
    • 2014
  • The aim of this study was to investigate which hydroponic system is the optimum for growth and photosynthetic characteristics of Angelica gigas during experiment. Angelica gigas 'Manchu' were sowed and managed under a growth room chamber. The environmental conditions (temperature $22^{\circ}C/18^{\circ}C$ (day/night), relative humidity 50-70%, photosynthetic photon flux density (PPFD) $120{\pm}6{\mu}mol\;m^{-2}s^{-1}$) were maintained for 3 weeks. Forty eight seedlings with 4-5 leaves were transplanted in deep flow technique (DFT), substrate, and spray culture systems [culture bed: 800 (L) ${\times}$ 800 (W) ${\times}$ 400 mm(H)] under $150{\pm}5{\mu}mol\;m^{-2}s^{-1}$ PPFD provided with fluorescence lamps and cultivated for 11 weeks. At the end of the experiment, fresh and dry weights, leaf lenghth and width, SPAD, root fresh, and dry weights, and root volume of Anglica gigas were measured. Photosynthetic rate of Anglica gigas were measured with portable photosynthesis systems to investigate optimum PPFD, $CO_2$ concentration, and air temperature conditions. Fresh and dry weights of Anglica gigas grown in substrate were significantly greater than DFT-treated, but there were not significant with spray treatment. Leaf photosynthesis of Anglica gigas showed the tendency to sharply increase as PPFD was increased from 50 to $200{\mu}mol\;m^{-2}s^{-1}$. Though $CO_2$ saturation point was around $1000-1200{\mu}mol\;mol^{-1}$, increase in air temperature from 16 to $26^{\circ}C$ did not quite affect photosynthesis of Anglica gigas. In conclusion, Anglica gigas may be optimally cultivated with a spray culture system as air temperature, PPFD, and $CO_2$ concentration for environment are controlled at $20{\pm}3^{\circ}C$, $150{\mu}mol\;m^{-2}s^{-1}$, and around $1000{\mu}mol\;mol^{-1}$ for mass production.

Optical Characteristic on the Growth of Centric Diatom, Skeletonema costatum (Grev.) Cleve Isolated from Jinhae Bay in Korea (진해만에서 분리한 중심목 규조류 Skeletonema costatum(Grev.) Cleve의 성장에 미치는 광학적 특성)

  • Oh, Seok-Jin;Kang, In-Seok;Yoon, Yang-Ho;Yang, Han-Soeb
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • The effects of light quality and irradiance on the growth of centric diatom, Skeletonema costatum (Jinhae Bay strain) were investigated in the laboratory. At 20$^{\circ}C$ and 30 psu, the irradiance-growth curve showed the maximum growth rate of 1.17 day$^{-1}$ with half-saturation photon flux density (PFD) (K$_s$) of 92.4 $\mu$mol photons $m^{-2}s^{-1}$, $\mu$=1.17 (I-5.28)/(I+81.8), (r=0.98), and a compensation PFD (I$_0$) was 5.28 $\mu$mol photons $m^{-2}s^{-1}$. The 10 equated to a depth of 3$\sim$5 m from March to May, 11 m in June and 4 m from July to September in Jinhae Bay. These responses suggested that irradiance at the depth near the surface layer in Jinhae Bay would provide favorable conditions for S. costatum. To assess the effects of light (i.e. wavelengths) on the growth, nine wave-lengths were used ranging from near ultraviolet to near-infrared supplied by light emitting diode. At an irradiance level of 25 $\mu$mol photons $m^{-2}s^{-1}$, S. costatum grew under wavelengths of 405, 470, 505, 525, 568 and 644 nm, but did not grow at 590 and 623 nm; whereas S. costatum grew at all wavelengths at 100 $\mu$mol photons $m^{-2}s^{-1}$. This implies that S. costatum is likely to grow well in enclosed water bodies where suspended particles absorbs most of the blue wavelengths, and dominated by yellow-orange wavelengths.

Growth Characteristics on the Water Temperature, Salinity and Irradiance of the harmful Algae Chattonella ovata Y. Hara et Chihara(Raphidophyceae) Isolated from South Sea, Korea (한국 남해에서 분리한 유해 침편모조류 Chattonella ovata Y. Hara et Chihara의 수온, 염분 및 광량에 대한 성장특성)

  • Noh, Il-Hyeon;Yoon, Yang-Ho;Kim, Dae-Il;Oh, Seok-Jin;Kim, Jong-Deok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.3
    • /
    • pp.140-147
    • /
    • 2010
  • We investigated the effects of water temperature, salinity and irradiance on the growth of the harmful algae Chattonella ovata isolated from South Sea, Korea. C. ovata grew under all combinations of water temperatures and salinity, except for all the salinity conditions at the water temperature of $10^{\circ}C$, with the salinity of 7.5 psu and 10 psu at $15^{\circ}C$, and 7.5 psu at $20^{\circ}C$ and $30^{\circ}C$. The maximum specific growth rate was $0.62\;day^{-1}$ at the combination of $30^{\circ}C$ and 30 psu. The results of two-way ANOVA indicated that growth rate depended greatly on the water temperatures while not being affected by interactions with the salinity. This indicates that C. ovata is a stenothermal and euryhaline organism, preferring high water temperatures. C. ovata did not grow at irradiance ${\leq}30\;{\mu}mol$ photons $m^{-2}s^{-1}$. Photoinhibition did not occur at $800\;{\mu}mol$ photons $m^{-2}s^{-1}$, which was the maximum irradiance used in this study. The irradiance-growth curve was described as $\mu$ = 0.74(I-16.0)/(I+43.9) at $30^{\circ}C$ and 30 psu. The half-saturation light intensity ($K_s$) was $75.9\;{\mu}mol$ photons $m^{-2}s^{-1}$ and compensation photon flux density ($I_c$) was $16.0\;{\mu}mol$ photons $m^{-2}s^{-1}$, especially this value was comparatively lower than those of Skeletonema costatum and other flagellates previously reported. Therefore, our results indicate that C. ovata has advantageous physiological characteristics for interspecific competition at the embayment and coastal areas of Korea in summer.