DOI QR코드

DOI QR Code

Germination Characteristics of Medicinal Crop Adenophora triphylla var. japonica Hara as Affected by Seed Disinfection and Light Quality

종자 소독처리와 광질에 따른 약용작물 잔대 종자의 발아특성

  • Lee, Hye Ri (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Kim, Hyeon Min (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Jeong, Hyeon Woo (Division of Applied Life Science, Graduate School of Gyeongsang National University) ;
  • Oh, Myung Min (Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Hwang, Seung Jae (Division of Applied Life Science, Graduate School of Gyeongsang National University)
  • 이혜리 (경상대학교 대학원 응용생명과학부) ;
  • 김현민 (경상대학교 대학원 응용생명과학부) ;
  • 정현우 (경상대학교 대학원 응용생명과학부) ;
  • 오명민 (충북대학교 축산.원예.식품공학부 원예학전공) ;
  • 황승재 (경상대학교 대학원 응용생명과학부)
  • Received : 2019.08.22
  • Accepted : 2019.10.08
  • Published : 2019.10.30

Abstract

This study was performed to investigate the seed morphological characteristics and dormancy type of Adenophora triphylla var. japonica Hara that high valued medicinal crop and to select the disinfectants and light quality for germination rate improvement. The seed disinfection was carried out using distilled water (control), NaClO 4%, $H_2O_2$ 4%, and benomyl $500mg{\cdot}L^{-1}$. The light quality treatments were set to dark condition (control I), fluorescent lamp (control II), LEDs [red, blue, green, and combined RB LEDs (red:blue = 8:2, 6:4, 4:6, 2:8)] with a photoperiod of 12/12 (light/dark) and light intensity $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux density. Although the Adenophora triphylla var. japonica Hara seed was an underdeveloped embryo (E) and seed (S) with an embryo (E):seed (S) ratio of 0.4, it is germinated within 30 days, and seed moisture saturation was reached within 6 hours after immersion. After seed disinfection, the mold incidence rate was significantly inhibited, and the final germination rate was the highest at 87% in the benomyl seed disinfection. The final germination rate was the highest at 92% in the red light, and the mean daily germination was the lowest in the R2B8. Therefore, there is almost no dormancy in the Adenophora triphylla var. japonica Hara seed, and benomyl seed disinfectant and red light were effective in the improvement of germination rate. So it is considered to the high value of use for medicinal crop Adenophora triphylla var. japonica Hara cultivation.

본 연구는 고부가가치 약용작물인 잔대(Adenophora triphylla var. japonica Hara)의 종자 형태특성과 휴면 유형을 조사하고, 발아율 향상을 위한 소독제와 광질을 선발하기 위해서 수행되었다. 종자 소독은 증류수(대조구), NaClO 4%, $H_2O_2$ 4%와 benomyl $500mg{\cdot}L^{-1}$를 이용하여 실시하였으며, 광질처리는 암조건(control I), 형광등(control II), LEDs[red, blue, green, RB LEDs(red:blue = 8:2, 6:4, 4:6, 2:8)]를 광주기 12/12(light/dark), 광도 $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ photosynthetic photon flux density로 설정하였다. 잔대 종자는 emryo (E):seed (S) ratio가 0.4로 미숙배 종자지만 30일 이내에 발아가 되며, 침지 6시간 만에 포화상태에 도달하였다. 종자 소독 후 benomyl 처리에서 곰팡이 발생이 유의적으로 억제되었으며, 최종 발아율이 87%로 가장 높았다. 적색광에서 최종 발아율이 92%로 가장 높았으며, 일일평균발아수는 R2B8에서 가장 적었다. 따라서 잔대 종자는 휴면이 거의 없으며, benomyl 소독제와 적색광이 발아율 향상에 효과적이여, 향후 약용작물 잔대 재배에 이용가치가 높을 것이라 판단된다.

Keywords

References

  1. Baskin, C.C., and J.M. Baskin. 2014. Seeds: ecology, biogeography, evolution of dormancy and germination. Academic Press, San Diego, USA.
  2. Baskin, J.M., and C.C. Baskin. 2004. A classification system for seed dormancy. Seed Sci. Res. 14:1-16. https://doi.org/10.1079/SSR2003150
  3. Borthwick, H.A., S.B. Hendricks, E.H. Toole, and V.K. Toole. 1954. Action of light on lettuce seed germination. Bot. Gaz. 115:205-225. https://doi.org/10.1086/335817
  4. Carpita, N.C. and N.W. Nabors. 1976. Effects of 35oC heat treatments on photosensitive ‘Grand Rapid’ lettuce seed germination. Plant Physiol. 57:612-616. https://doi.org/10.1104/pp.57.4.612
  5. Cho, G.Y., D.M. Son, J.M. Kim, B.S. Seo, S.Y. Yang, J.H. Bae, and B.G. Heo. 2008. Effect of LED as light quality on the germination, growth and physiological activities of broccoli sprouts. J. Bio-Environ. Con. 13:81-89. (in Korean)
  6. Cho, J.S., J.H. Jeong, S.Y. Kim and C.H. Lee. 2014. Temperature, light and chemical treatment promoting seed germination of Meterostachys sikokiana (Makino) Nakai. J. Flower Res. 22:54-59. (in Korean) https://doi.org/10.11623/frj.2014.22.2.3
  7. Choi, H., S.Y. Lee, Y.H. Rhie, J.H. Lee, S.Y. Kim, and K.C. Lee. 2018. Seed dormancy type and germination characteristics in Tiarella polyphylla D. Don native to Korea. Korean J. Plant Res. 31:363-371. (in Korean) https://doi.org/10.7732/KJPR.2018.31.4.363
  8. Choi, H.J., S.H. Kim, H.T. Oh, M.J. Chung, C.B. Cui, and S.S Ham. 2008. Effects of Adenophora triphylla ethylacetate extract on mRNA levels of antioxidant enzymes in human HepG2 cells. Korean J. Soc. Food Sci. Nutr. 37:1238-1243. (in Korean) https://doi.org/10.3746/jkfn.2008.37.10.1238
  9. Chung, M.J., S. Lee, Y.I. Park, and K.H. Kwon. 2016a. Antioxidative and neuroprotective effects of extract and fractions from Adenophora triphylla. Korean J. Soc. Food Sci. Nutr. 45:1580-1588. (in Korean) https://doi.org/10.3746/jkfn.2016.45.11.1580
  10. Chung, M.J., S. Lee, Y.I. Park, and K.H. Kwon. 2016b. Neuroprotective effects of phytosterols and flavonoids from Cirsium setidens and Aster scaber in human brain neuroblastoma SK-N-SH cells. Life Sci. 148:173-182. (in Korean) https://doi.org/10.1016/j.lfs.2016.02.035
  11. Delaquis, P.J., P.L. Sholberg, and K. Stanich. 1999. Disinfection of mung bean seed with gaseous acetic acid. J. Food Prot. 62:953-957. https://doi.org/10.4315/0362-028X-62.8.953
  12. Edwards, T.I. 1934. Relations of germinating soybeans to temperature and length of incubation time. Plant Physiology 9:1-30. https://doi.org/10.1104/pp.9.1.1
  13. Fett. W.F. 2002. Reduction of Escherichia coli O157:H7 and Salmonella spp. on laboratory inoculated mung bean seed by chlorine treatment. J. Food Protection 65:848-852. https://doi.org/10.4315/0362-028X-65.5.848
  14. Gitaitis, R. and R. Walcott. 2007. The epidemiology and management of seedborne bacterial diseases. Annu. Rev. Phytopathol. 45:371-397. https://doi.org/10.1146/annurev.phyto.45.062806.094321
  15. Gordon, A.G. 1971. The germination resistance test-A new test for measuring germination quality of cereals. J. Canadian Plant Sci. 51:181-183. https://doi.org/10.4141/cjps71-036
  16. Gorovoi, P.G., G.I. Ponomarchuk, and L.I. Strigina. 1971. Chemotaxonomic study of Codonopsis (Family Campanulaceae) and its related genera. Bio. chem. System. Ecol. 23:809-812.
  17. Ham, Y.A., H.J. Choi, M.J. Chung, and S.S. Ham. 2009a. Component analysis and antioxidant activity of Adenophora triphylla. Korean J. Soc. Food Sci. Nutr. 38: 274-379. (in Korean) https://doi.org/10.3746/jkfn.2009.38.3.274
  18. Ham, Y.A., H.J. Choi, M.J. Chung, and S.S. Ham. 2009b. Antimutagenic and antitumor effects of Adenophora triphylla extracts. Korean J. Soc. Food Sci. Nutr. 38: 25-31. (in Korean) https://doi.org/10.3746/jkfn.2009.38.1.025
  19. Hopkins, W.G. 1999. Introduction to plant physiology. John Wiley & Sons, Inc., USA.
  20. Hwang, H.J., and G.W. Choi. 2008. Improvement of in virto seed germination in chicory (Cichorium intybus L.) and garland chrysanthemum (Chrysanthemum coronarium L.). J. Bio-Environ. Con. 17:297-305. (in Korean)
  21. Hwang, H.J., J.M. Lee, S.Y. Kim, and G.W. Choi. 2008. Seed germination in lettuce affected by light quality and plant growth regulators. J. Bio-Environ. Con. 17:51-59. (in Korean)
  22. Ji, Y.U., B.C. Moon, A.Y. Lee, J.M. Chun, B.K. Choo, and H.K. Kim. 2010. Molecular phylogenetic position of Adenophora racemosa, an endemic species in Korea. Korean J. Med. Crop Sci. 18:379-388. (in Korean)
  23. Ji, Y.U., B.C. Moon, A.Y. Lee, T.S. Yoon, H.K. Song, B.K. Choo, and H.K. Kim. 2009. A study on classification and ordination of Adenophora racemosa population. Korean J. Environ. Res. Tech. 12:86-98. (in Korean)
  24. Kendrick, R.E., and G.H.M. Kronenberg. 1994. Photomorphogensis in plants. Kluwer Academic, Dordrecht, The Netherlands.
  25. Kim, I.D., and S.D. Kim. 2001. Changes in quality of soybean sprouts grown by ozone water treatment during storage. Korean J. Postharvest Sci. Tech. 8:279-384. (in Korean)
  26. Kim, I.D., M.J. Park, J.W. Cho, S.S. Soe, M.K. Kim, J.B. Lee, S.K. Lee, and S.D. Kim. 2001. Effect of ozone treatment on the quality of soybean sprouts. Korean J. Food Preserv. 5:177-185. (in Korean)
  27. Kim, J.H. 2007. The study on the nutrients and function of Adenophora triphylla var. japonica Hara. Master Thesis. Yeungnam Univ.. (in Korean)
  28. Kwack, B.H., and H. Kang. 1985. Effects of specific light qualities on the seed germination of Amaranthus hypochondriacus. Korean J. Soc. Hort. Sci. 26:158-162.
  29. Lee, J.Y., J.H. Lee, G.Y. Ki, S.T. Kim, and T.H. Han. 2011. Improvement of seed germination in Rosa rugosa. Korean J. Hortic. Sci. Technol. 29:352-357. (in Korean)
  30. Martin, A. 1946. The comparative internal morphology of seeds. The Amer. Midl. Nat. 36:513-660. https://doi.org/10.2307/2421457
  31. Moon, J.S., H.M. Kim, D.C. Choi, Y.K. Hong, M.H. Sung, Y.J. Jang, B.R. Go, N.K. Oh, and Y.G. Choi. 2003. Disinfection of seed borne black leg disease (Phoma Wasabiae) in wasabi (Wasabia japonica Mutsum). J. Bio-Environ. Con. 12:180-183. (in Korean)
  32. Nikolaeva, M.G. 1999. Pattern of seeds dormancy and germination as related to plant phylogeny and ecological and geographical conditions of their habitats. J. Russ. Plant Physiol. 46:369-373.
  33. Park, D.S. 2010. The edible wild vegetable containing biological active substances. euliiglobal. Korea. pp 231-234.
  34. Park, E.J., J.H. Kwon, and Y.K. Lee. 2009. Germination rate and microbial safety during cultivation of disinfected seeds. Korean J. Food Preserv. 16:292-298. (in Korean)
  35. Park, K.J., J.H. Lim, J.H. Kim, J.W. Jung, J.H. Jo, and S.W. Jung. 2007. Reduction of microbial load on radish (Raphanus sativus L.) seeds by aqueous chlorine dioxide and hot water treatments. Korean J. Food Preserv. 14:487-491. (in Korean)
  36. Vandelook, F., N. Bolle, and J.A. V. Assche. 2007. Seed dormancy and germination of the European Chaerophyllum temulum (Apiaceae), a member of a trans-atlantic genus. Ann. Bot. 100:233-139. https://doi.org/10.1093/aob/mcm090