• Title/Summary/Keyword: saturated concrete

Search Result 82, Processing Time 0.025 seconds

A Study on the Uplift Capacity of Cylindrical Concrete Foundations for Pipe-Framed Greenhouse (파이프 골조온실의 원주형 콘크리트 기초의 인발저항력에 관한 연구)

  • ;;;;Shino Kazuo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.109-119
    • /
    • 1998
  • Recently pipe-framed greenhouses are widely constructed on domestic farm area. These greenhouses are extremely light-weighted structures and so are easily damaged under strong wind due to the lack of uplift resistance of foundation piles. This experiment was carried out by laboratory soil tank to investigate the displacement be haviors of cylindrical pile foundations according to the uplift loads. Tested soils were sampled from two different greenhouse areas. The treatment for each soil type are consisted of 3 different soil moisture conditions, 2 different soil depths, and 3 different soil compaction ratios. Each test was designed to be repeated 2 times and additional tests were carried out when needed. The results are summarized as follows : 1. When the soil moisture content are low and/or pile foundations are buried relatively shallow, ultimate uplift capacity of foundation soil was generated just after begining of uplift displacement. But under the high moisture conditions and/or deeply buried depth, ultimate up-lift capacity of foundation soil was generated before the begining of uplift displacement. 2. For the case of soil S$_1$, the ultimate uplift capacity of piles depending on moisture contents was found to be highest in optimum moisture condition and in the order of air dryed and saturated moisture contents. But for the case of soil S$_2$, the ultimate uplift capacity was found to be highest in optimum moisture condition and in the order of saturated and air dryed moisture contents. 3. Ultimate uplift capacities are varied depending on the pile foundation soil moisture conditions. Under the conditions of optimum soil moisture contents with 60cm soil depth, the ultimate uplift capacity of pile foundation in compaction ratio of 80%, 85%, and 90% for soil 51 are 76kg, 115kg, and 155kg, respectively, and for soil S$_2$are 36kg, 60kg, and 92kg, respectively. But considering that typical greenhouse uplift failure be occurred under saturnted soil moisture content which prevails during high wind storm accompanying heavy rain, pile foundation is required to be designed under the soil condition of saturated moisture content. 4. Approximated safe wind velosities estimated for soil sample S$_1$and S$_2$are 32.92m/s and 26.58m/s respectively under the optimum soil condition of 90% compaction ratio and optimum moisture content. But considering the uplift failure pattern under saturated moisture contents which are typical situations of high wind accompanying heavy rain, the safe wind velosities for soil sample S$_1$and S$_2$are not any higher than 20.33m/s and 22.69m/s respectively.

  • PDF

Phenomenological Model to Re-proportion the Ambient Cured Geopolymer Compressed Blocks

  • Radhakrishna, Radhakrishna;Madhava, Tirupati Venu;Manjunath, G.S.;Venugopal, K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.193-202
    • /
    • 2013
  • Geopolymer mortar compressed blocks were prepared using fly ash, ground granulated blast furnace slag, silica fume and metakaolin as binders and sand/quarry dust/pond ash as fine aggregate. Alkaline solution was used to activate the source materials for synthesizing the geopolymer mortar. Fresh mortar was used to obtain the compressed blocks. The strength development with reference to different parameters was studied. The different parameters considered were fineness of fly ash, binder components, type of fine aggregate, molarity of alkaline solution, age of specimen, fluid-to-binder ratio, binder-to-aggregate ratio, degree of saturation, etc. The compressed blocks were tested for compression at different ages. It was observed that some of the blocks attained considerable strength within 24 h under ambient conditions. The cardinal aim was to analyze the experimental data generated to formulate a phenomenological model to arrive at the combinations of the ingredients to produce geopolymer blocks to meet the strength development desired at the specified age. The strength data was analyzed within the framework of generalized Abrams' law. It was interesting to note that the law was applicable to the analysis of strength development of partially saturated compressed blocks when the degree of saturation was maintained constant. The validity of phenomenological model was examined with an independent set of experimental data. The blocks can replace the traditional masonry blocks with many advantages.

Study on Seepage Behavior of Concrete Faced Gravel-Fill Dam with Cracked Face Slab (차수벽에 균열이 발생한 표면차수벽형사력댐의 침투거동 연구)

  • Cho, Sung-Eun;Park, Han-Gyu;Im, Eun-Sang;Kim, Ki-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.866-873
    • /
    • 2009
  • CFRD (Concrete Faced Rockfill Dam) has been world-widely constructed due to a lot of advantages compared with rockfill dam and recently, sand/gravel materials, instead of crushed rock materials, are also utilized as a main rockfill material to overcome geological and environmental problems. In this paper, the process of water infiltration into the originally unsaturated sand/gravel-fill dam is studied using two-dimensional saturated-unsaturated seepage theory. According to the results of seepage analysis, if the effective drainage zone is installed in the dam, the reservoir water infiltrate into the dam along a downward flow path towards the lower drainage area. The main body constructed with sand/gravel materials, therefore, remains unsaturated.

  • PDF

Predicting Damage in a Concrete Structure Using Acoustic Emission and Electrical Resistivity for a Low and Intermediate Level Nuclear Waste Repository

  • Hong, Chang-Ho;Kim, Jin-Seop;Lee, Hang-Lo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2021
  • In this study, the well-known non-destructive acoustic emission (AE) and electrical resistivity methods were employed to predict quantitative damage in the silo structure of the Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC), Gyeongju, South Korea. Brazilian tensile test was conducted with a fully saturated specimen with a composition identical to that of the WLDC silo concrete. Bi-axial strain gauges, AE sensors, and electrodes were attached to the surface of the specimen to monitor changes. Both the AE hit and electrical resistance values helped in the anticipation of imminent specimen failure, which was further confirmed using a strain gauge. The quantitative damage (or damage variable) was defined according to the AE hits and electrical resistance and analyzed with stress ratio variations. Approximately 75% of the damage occurred when the stress ratio exceeded 0.5. Quantitative damage from AE hits and electrical resistance showed a good correlation (R = 0.988, RMSE = 0.044). This implies that AE and electrical resistivity can be complementarily used for damage assessment of the structure. In future, damage to dry and heated specimens will be examined using AE hits and electrical resistance, and the results will be compared with those from this study.

Investigation on alkalinity of pore solution and microstructure of hardened cement-slag pastes in purified water

  • Hu, Ya-Ru;Zuo, Xiao-Bao;Li, Xiang-Nan;Jiang, Dong-Qi
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.507-515
    • /
    • 2021
  • To evaluate the influence of slag on the alkalinity of pore solution and microstructure of concrete, this paper performs a leaching experiment on hardened cement-slag pastes (HCSP) slice specimens with different slag content in purified water. The pH value of pore solution, average porosity, morphology, phase composition and Ca/Si of HCSP specimens in the leaching process are measured by solid-liquid extraction, saturated-dried weighing, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) and X-ray diffraction (XRD). Results shows that the addition of slag can mitigate an increase in porosity and a decrease in Ca/Si of HCSP in the leaching process. Besides, an appropriate slag content can improve the microstructure so as to obtain the optimum leaching resistance of HCSP, which can guarantee the suitable alkalinity of pore solution to prevent a premature corrosion of reinforced bar. The optimum slag content is 40% in HCSP with a water-binder ratio of 0.45, and an excessive slag causes a significant decrease in the alkalinity of pore solution, resulting in a loss of protection on reinforced bar in HCSP.

Evaluation For Adhesion in Tension of SBR Polymer Modified Concrete Tensile by Uniaxial Method (직접인장방법에 의한 SBR 폴리머 개질 콘크리트의 부착강도 특성 평가)

  • Yun, Kyong-Ku;Jang, Heung-Gyun;Lee, Nam-Ju;Lee, Seung-Jae;Hong, Chang-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.117-126
    • /
    • 2001
  • In this research, evaluation of adhesion in tension property of SBR-modified concrete to ordinary portland cement concrete was conducted with uniaxial direct tensile bond test which was proposed by Kuhlmann. A test set-up was fabricated in order to minimize the eccentric force by introducing a joint which might fully rotate. The main experimental variables were cement-latex ratios, surface preparations and moisture levels. The results obtained were as follows: The LMC specimen at 15% latex-cement ratio increased the adhesion in tension by range of 37% compared to that of conventional cement concrete. This might be due to latex film formed between cement paste and aggregate. The effects of surface preparation on bond of latex modified concrete to conventional concrete were significant at the conditions by sand paper and wire brush. A better bond could be achieved by rough surface rather than smooth. The saturated and surface dry (SSD) condition were considered to be the most appropriate moisture level followed by wet, finally by dry. Thus, a proper surface preparation and moisture level are quite necessity in order to obtain better bonding at LMC overlay.

  • PDF

Experimental Study of Clays Mixed into Compaction Piles (다짐말뚝으로의 점토혼입현상에 관한 실험적 연구)

  • You, Seung-Kyong;Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.41-46
    • /
    • 2009
  • In this paper, a series of laboratory chamber tests were performed to evaluate the effects of clays mixed into compaction piles due to confining stress of ground on consolidation promoting. For the tests, various compaction piles such as SCP, GCP, and RAPP (Recycled-Aggregate Porous concrete Pile) were used. The ground condition was simulated at 50% and 100% of degree of consolidation. Also, confining stresses were applied to the composite ground corresponding to those of 5m depth. The amount of mixed clays into each compaction pile were estimated by measuring the drainage from the saturated compaction piles. From the test result, it was shown that the drainage area of compaction pile was changing according to the consolidation condition. GCP showed the most change of drainage area as it has relatively large void ratio; however, the amount of change was decreased by progressing consolidation of ground.

  • PDF

Properties of Mortar Adhered to the Recycled Coarse Aggregate in Cement Paste (시멘트풀 속에서의 순환굵은골재 부착모르타르의 성상변화에 관한 연구)

  • Moon, Dae-Joong;Choi, Jae-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.95-102
    • /
    • 2011
  • Vicker's hardness and pore size distribution of mortar adhered to the recycled coarse aggregate were tested according to the strength level of original concrete of recycled coarse aggregate to find the change of mortar adhered to the recycled coarse aggregate in cement paste. The strength levels of original concrete of recycled coarse aggregate were 25.5MPa, 41.7MPa and 60.1MPa and the aggregates were used at the state of saturated surface dry condition and oven dry condition. The results of this experimentation indicated that the mean value of Vicker's hardness was increased according to age and strength of original concrete of recycled aggregate. Porosity of $100nm{\sim}10{\mu}m$ size was reduced and porosity of 6nm~100nm size was increased in cement paste.

  • PDF

Analysis of distortion effect of resistivity data due to 3D geometry of fill dam (필댐의 3차원 기하 효과에 따른 전기비저항 왜곡 효과 분석)

  • Oh Seokhoon;Kim Hyoung-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.55-58
    • /
    • 2005
  • Low resistivity zone is observed at the lower part of a CFRD (Concrete Face Rockfill Dam). Generally, CFRD tends not to have any saturated zone within the body, but the result of resistivity survey shows that it is possible for the dam to be saturated under 20m depth with water. The level of reservoir was under 10m from the crest. We suspect that this result may come from the wrong 2D inversion process ignoring the 3D geometry of dams. For the analysis of possibility of distortion by different geometry, we perform the 3D forward modeling for the dam and apply the 2D inversion process. And then we check the point of traditional interpretation of resistivity data. By the analysis, it is found that the result of 2D inversion process of 3D geometry of dams, seems to have deep relation with the reservoir level, and the complex 3D structure hide some internal electrical anomaly of dams from resistivity information.

  • PDF

Bond Performance of Magnesium Potassium Phosphate Cement Mortar according to Moisture Condition of Substrate (바탕면 함수조건에 따른 마그네시아 인산칼륨 시멘트 모르타르의 부착성능)

  • Kang, Suk-Pyo;Kim, Jae-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • This study focuses on the investigation of bond strength of magnesium potassium phosphate cement mortar(MKPC) according to moisture condition of substrate. Tensile bond test, shear bond test and interfacial bond test are adopted for evaluating the adhesion characteristics of MKPC to conventional cement mortar substrate. The main experimental variables are test methods and moisture levels of substrate. Because the moisture condition of the substrate may be critical to achieving bond, optimum moisture condition for a conventional concrete substrate has evaluated in this study. The results are as follows ; The effects of moisture condition at substrate into the bonding of MKPC are less different than polymer cement mortar and epoxy mortar. But the saturated and surface dry condition is the most appropriate moisture level among the considered, followed by saturated condition and wet condition. Thus, an adequate moisture level of substrate for MKPC is essential for good bond strength.