• Title/Summary/Keyword: satellite simulation

Search Result 1,137, Processing Time 0.026 seconds

Laboratory geometric calibration simulation analysis of push-broom satellite imaging sensor

  • Reza Sh., Hafshejani;Javad, Haghshenas
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.67-82
    • /
    • 2023
  • Linear array imaging sensors are widely used in remote sensing satellites. The final products of an imaging sensor can only be used when they are geometrically, radiometrically, and spectrally calibrated. Therefore, at the first stages of sensor design, a detailed calibration procedure must be carefully planned based on the accuracy requirements. In this paper, focusing on inherent optical distortion, a step-by-step procedure for laboratory geometric calibration of a typical push-broom satellite imaging sensor is simulated. The basis of this work is the simulation of a laboratory procedure in which a linear imager mounted on a rotary table captures images of a pin-hole pattern at different angles. By these images and their corresponding pinhole approximation, the correction function is extracted and applied to the raw images to give the corrected ones. The simulation results illustrate that using this approach, the nonlinear effects of distortion can be minimized and therefore the accuracy of the geometric position of this method on the image screen can be improved to better than the order of sub-pixel. On the other hand, the analyses can be used to proper laboratory facility selection based on the imaging sensor specifications and the accuracy.

Prediction of Parabolic Antenna Satellite Drag Force in Low Earth Orbit using Direct Simulation Monte Carlo Method (직접모사법을 이용한 지구 저궤도 파라볼릭 안테나 탑재 위성의 항력 예측)

  • Shin, Somin;Na, Kyung-Su;Lee, Juyoung;Cho, Ki-Dae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.616-621
    • /
    • 2014
  • Consumption of the fuel on the satellite operating in low earth orbit, is increased due to the air resistance and the amount of increase makes the satellite lifetime decrease or the satellite mass risen. Therefore the prediction of drag force of the satellite is important. In the paper, drag force and drag coefficient analysis of the parabolic antenna satellite in low earth orbit using direct simulation monte carlo method (DSMC) is conducted according to the mission altitude and angle of attack. To verify the DSMC simulated rarefied air movement, Starshine satellite drag coefficient according to the altitude and gas-surface interaction are compared with the flight data. Finally, from the analysis results, it leads to appropriate satellite drag coefficient for orbit lifetime calculation.

Dynamics Modeling and Simulation of Korean Communication, Ocean, and Meteorology Satellite

  • No, Tae-Soo;Lee, Sang-Uk;Kim, Sung-Ju
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • COMS(Communication, Oceanography, and Meteorology Satellite) is the first Korean multi-purpose satellite which is planned to be deployed at the altitude of geosynchronous orbit above the Korean peninsular. Noting that COMS is composed of the main BUS structure, two deployable solar panels, one yoke, five reactions wheels, COMS is treated as a collection of 9 bodies and its nonlinear equations of motion are obtained using the multi-body dynamics approach. Also, a computer program is developed to analyze the COMS motion during the various mission phase. Quite often, the equations of motion have to be derived repeatedly to reflect the fact that the spacecraft dynamics change as its configuration, and therefore its degree of freedom varies. However, the equations of motion and simulation software presented in this paper are general enough to represent the COMS dynamics of various configurations with a minimum change in input files. There is no need to derive the equations of motion repeatedly. To show the capability of the simulation program, the spacecraft motion during the solar array partial and full deployment has been simulated and the results are summarized in this paper.

Introduction to Simulation Activity for CMDPS Evaluation Using Radiative Transfer Model

  • Shin, In-Chul;Chung, Chu-Yong;Ahn, Myoung-Hwan;Ou, Mi-Lim
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.282-285
    • /
    • 2007
  • Satellite observed brightness temperature simulation using a radiative transfer model (here after, RTM) is useful for various fields, for example sensor design and channel selection by using theoretically calculated radiance data, development of satellite data processing algorithm and algorithm parameter determination before launch. This study is focused on elaborating the simulation procedure, and analyzing of difference between observed and modelled clear sky brightness temperatures. For the CMDPS (COMS Meteorological Data Processing System) development, the simulated clear sky brightness temperatures are used to determine whether the corresponding pixels are cloud-contaminated in cloud mask algorithm as a reference data. Also it provides important information for calibrating satellite observed radiances. Meanwhile, simulated brightness temperatures of COMS channels plan to be used for assessing the CMDPS performance test. For these applications, the RTM requires fast calculation and high accuracy. The simulated clear sky brightness temperatures are compared with those of MTSAT-1R observation to assess the model performance and the quality of the observation. The results show that there is good agreement in the ocean mostly, while in the land disagreement is partially found due to surface characteristics such as land surface temperature, surface vegetation, terrain effect, and so on.

  • PDF

A Test Framework for Dynamically Supporting the Simulation Works of the Global Navigation Satellite Systems (위성항법 시뮬레이션 작업을 동적으로 지원하는 테스트 프레임워크)

  • Kuk, Seung-Hak;Kim, Hyeon-Soo;Lee, Sang-Uk
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.191-203
    • /
    • 2009
  • Simulation is the work that identifies the characteristics of some problem through the simulated experiments. During the experiments it is frequently required to change or replace the simulation models, algorithms, or input/output data. Especially, in the case of the simulation works performed by replacing algorithms, if a replaceable component that implements a specific algorithm is not correct with respect to its functionality it is very difficult to carry out the simulation works successfully. In this paper, we suggest a test framework that verifies functional correctness of the replaceable component in the software-based GNSS (Global Navigation Satellite System) simulation environments. When a component is replaced, this framework enables us to properly execute the functional test for the component according to its context.

  • PDF

Agile Attitude Control of Small Satellite using 5Nm Small CMG (5Nm급 소형 CMG를 이용한 소형위성 고기동 자세제어)

  • Rhee, Seung-Wu;Seo, Hyun-Ho;Yoon, Hyung-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.952-960
    • /
    • 2018
  • Recently, lots of remote sensing satellite require agility to collect more images within the limited time frame. To satisfy this kind of mission requirement, high torque actuator such as CMG is an essential element. In this study, 5Nm class small CMG developed by KARI is introduced to implement for an agile small satellite design. One of the singularity escape CMG steering law, Designated Direction Escape (DDE) method, which is a sort of modified version of Singular Direction Avoidance (SDA) method is summarized for its application on the numerical simulation of agile attitude control system design result. The performance of DDE method is demonstrated properly by escaping well known elliptic internal singularity successfully. 5Nm class small CMG cluster in a pyramid type as well as a roof type configuration is utilized to perform the numerical simulation and to demonstrate its agility design result for a small satellite. Simulation result shows the properness of 5Nm small CMG to a small agile satellite system. Also, the simulation result provides some valuable information that is important to CMG hardware design and manufacturing.

Adaptive Compensation Method Using the Prediction Algorithm for the Doppler Frequency Shift in the LEO Mobile Satellite Communication System

  • You, Moon-Hee;Lee, Seong-Pal;Han, Young-Yearl
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.32-39
    • /
    • 2000
  • In low earth orbit (LEO) satellite communication systems, more severe phase distortion due to Doppler shift is frequently detected in the received signal than in cases of geostationary earth orbit (GEO) satellite systems or terrestrial mobile systems. Therefore, an estimation of Doppler shift would be one of the most important factors to enhance performance of LEO satellite communication system. In this paper, a new adaptive Doppler compensation scheme using location information of a user terminal and satellite, as well as a weighting factor for the reduction of prediction error is proposed. The prediction performance of the proposed scheme is simulated in terms of the prediction accuracy and the cumulative density function of the prediction error, with considering the offset variation range of the initial input parameters in LEO satellite system. The simulation results showed that the proposed adaptive compensation algorithm has the better performance accuracy than Ali's method. From the simulation results, it is concluded the adaptive compensation algorithm is the most applicable method that can be applied to LEO satellite systems of a range of altitude between 1,000 km and 2,000 km for the general error tolerance level, M = 250 Hz.

  • PDF

Dynamic Caching Routing Strategy for LEO Satellite Nodes Based on Gradient Boosting Regression Tree

  • Yang Yang;Shengbo Hu;Guiju Lu
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.131-147
    • /
    • 2024
  • A routing strategy based on traffic prediction and dynamic cache allocation for satellite nodes is proposed to address the issues of high propagation delay and overall delay of inter-satellite and satellite-to-ground links in low Earth orbit (LEO) satellite systems. The spatial and temporal correlations of satellite network traffic were analyzed, and the relevant traffic through the target satellite was extracted as raw input for traffic prediction. An improved gradient boosting regression tree algorithm was used for traffic prediction. Based on the traffic prediction results, a dynamic cache allocation routing strategy is proposed. The satellite nodes periodically monitor the traffic load on inter-satellite links (ISLs) and dynamically allocate cache resources for each ISL with neighboring nodes. Simulation results demonstrate that the proposed routing strategy effectively reduces packet loss rate and average end-to-end delay and improves the distribution of services across the entire network.

A study on the tracking algorithm of satellite antenna system (위성 안테나 시스템의 추적 알고리즘에 관한 연구)

  • 강우신;조창호;이상철;조도현;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.128-128
    • /
    • 2000
  • An antenna tracking technique, referred to as "step track", is commonly used in communication applications. In this paper, an algorithm to improve the step-tracking technique for satellite tracking is proposed. We suggest a method by which the antenna scans the azimuth, detects the satellite signal without the position information, and points quickly to the direction receiving the signal of peak level. After reaching the peak level, the step-track system maintains enough signal levels to receive satellite broadcasting normally. Performance of the Tracking Algorithm proposed in this paper are verified with simulation.

  • PDF

Validation of Numerical Wind Simulation by Offshore Wind Extraction from Satellite Images (위성영상 해상풍 축출에 의한 수치바람모의 검증)

  • Kim, Hyun-Goo;Hwang, Hyo-Jeong;Lee, Hwa-Woon;Kim, Dong-Hyuk;Kim, Deok-Jin
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.847-855
    • /
    • 2009
  • As a part of effort to establish an offshore wind resource assessment system of the Korean Peninsula, a numeric wind simulation using mesoscale climate model MM5 and a spatial distribution of offshore wind extracted from SAR remote-sensing satellite image is compared and analyzed. According to the analyzed results, the numeric wind simulation is found to have wind speed over predication tendency at the coastal sea area. Therefore, it is determined that a high-resolution wind simulation is required for complicated coastal landforms. The two methods are verified as useful ways to identify the spatial distribution of offshore wind by mutual complementation and if the meteor-statistical comparative analysis is performed in the future using adequate number of satellite images, it is expected to derive a general methodology enabling systematic validation and correction of the numeric wind simulation.