DOI QR코드

DOI QR Code

Agile Attitude Control of Small Satellite using 5Nm Small CMG

5Nm급 소형 CMG를 이용한 소형위성 고기동 자세제어

  • Received : 2018.08.17
  • Accepted : 2018.10.19
  • Published : 2018.11.01

Abstract

Recently, lots of remote sensing satellite require agility to collect more images within the limited time frame. To satisfy this kind of mission requirement, high torque actuator such as CMG is an essential element. In this study, 5Nm class small CMG developed by KARI is introduced to implement for an agile small satellite design. One of the singularity escape CMG steering law, Designated Direction Escape (DDE) method, which is a sort of modified version of Singular Direction Avoidance (SDA) method is summarized for its application on the numerical simulation of agile attitude control system design result. The performance of DDE method is demonstrated properly by escaping well known elliptic internal singularity successfully. 5Nm class small CMG cluster in a pyramid type as well as a roof type configuration is utilized to perform the numerical simulation and to demonstrate its agility design result for a small satellite. Simulation result shows the properness of 5Nm small CMG to a small agile satellite system. Also, the simulation result provides some valuable information that is important to CMG hardware design and manufacturing.

지구관측용 인공위성에서 고기동성이 많이 요구되고 있다. 고기동성을 만족시키기 위해 고토크 구동기가 인공위성 설계에서 필수적이다. 본 연구에서 고기동 소형위성 설계를 위해 한국항공우주연구원에서 연구되고 있는 5Nm급 소형 제어모멘트자이로(CMG, Control Moment Gyro) 개발 결과를 소개하였다. 구동로직 활용을 위해, 잘 알려진 Elliptic internal singularity를 성공적으로 회피하는 등으로 Singular Direction Avoidance (SDA) 방법에서 향상된 Designated Direction Escape (DDE) CMG 클러스터 구동로직에 대한 간단한 성능 검증과 상세한 로직 방법이 제시되었고, CMG가 피라미드 형태로 장착되었을 경우와 지붕 형태로 장착되었을 경우에 대해 5Nm급 소형 CMG가 고기동 소형위성 설계에 적절한지를 검증하기 위한 시뮬레이션이 수행되었다. 시뮬레이션 결과를 바탕으로 CMG 개발시 고려해야 할 의미있고 중요한 사항들을 제시하였다.

Keywords

References

  1. Lee, S. H., Rhee, S. W., Oh, S. H., Yong, K. L., Kim, K. W., and Seo, H. H., "Development of Miniature CMG for Satellite Attitude Control(I): Design and Manufacture," Proceeding of the Korean Society for Aeronautical and Space Science Fall Conference, 2005, pp. 878-881.
  2. Lee, S. M., Seo, H. H., and Rhee, S. W., "Design and Practical Results of Four-CMG Cluster for Small Satellites," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 8, No. 1, 2007, pp. 105-114.
  3. Seo, H. H., Rhee, S. W., Oh, H. S., Choen, D. I., Bang, H. C., and Park, J. H., "Development Status of Control Moment Gyro for Middle-Sized Satellite," Proceeding of the Korean Society for Aeronautical and Space Science Spring Conference, 2008, pp. 1004-1007.
  4. Kim, S. H., Lee, S. M. and Rhee, S. W., "Development of CMG Ground Simulator using Torque Sensor," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 37, No. 1, 2009, pp. 89-98. https://doi.org/10.5139/JKSAS.2009.37.1.089
  5. Rhee, S. W., and Kwon, H. J., "Low Cost Small CMG Performance Test and Analysis," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 39, No. 6, 2011, pp. 543-552. https://doi.org/10.5139/JKSAS.2011.39.6.543
  6. Jang, W. Y., Rhee, S. W., and Kwon, H. J., "Development of 0.6Nm Small CMG Hardware and Performance Test," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 38, No. 9, 2010, pp. 933-942. https://doi.org/10.5139/JKSAS.2010.38.9.933
  7. Rhee, S. W., "Development of 5Nm Small CMG," Proceeding of the Society for Aerospace System Engineering Spring Conference, 2018.
  8. Crenshaw, J. W., "2-Speed, a Single-Gimbal Control Moment Gyro Attitude Control System," AIAA Guidance and Control Conference, Key Biscayne, Florida, 1973, No. 73-895.
  9. Bedrossian, N. S., Paadiso, J., Bergmann, E. V., and Rowell, D., "Steering Law Design for Redundant Single-Gimbal Control Moment Gyroscopes," Journal of Guidance, Control, and Dynamics, Vol. 13, No. 6, 1990, pp. 1083-1089. https://doi.org/10.2514/3.20582
  10. Ford, K. A., and Hall, C. D., "Singular Direction Avoidance Steering for Control-Moment Gyros," Journal of Guidance, Control, and Dynamics, Vol. 23, No. 4, 2000, pp. 648-656. https://doi.org/10.2514/2.4610
  11. Wie, B., Bailey, D., and Heiberg, C., "Singularity Robust Steering Logic for Redundant Single-Gimbal Control Moment Gyros," Journal of Guidance, Control, and Dynamics, Vol. 24, No. 5, 2001, pp. 865-872. https://doi.org/10.2514/2.4799
  12. Wie, B., "Singularity Escape/Avoidance Steering Logic for Control Moment Gyro Systems," Journal of Guidance, Control, and Dynamics, Vol. 28, No. 5, 2005, pp. 948-956. https://doi.org/10.2514/1.10136
  13. Lee, S. M., and Rhee, S. W., "New Steering Law with Designated Direction Escape(DDE) for Control Moment Gyros," IEICE Trans. on Fundamentals of ECCS, Vol. E92-A, No. 1, 2009, pp. 315-317. https://doi.org/10.1587/transfun.E92.A.315
  14. Seo, H. H., and Bang, H. C., "Control Moment Gyro Steering Logic for Singularity Avoidance and Repeatability," Proceeding of the Korean Society for Aeronautical and Space Science Fall Conference, 2016, pp. 381-382.
  15. Yoon, H., "Current State of the Satellite Attitude Maneuver Technology using High-Torque Actuators," Proceeding of the Korean Society for Aeronautical and Space Science Spring Conference, 2017, pp. 331-332.