• 제목/요약/키워드: sapphire wafer

검색결과 69건 처리시간 0.034초

사파이어 웨이퍼의 기계-화학적인 연마 가공특성에 관한 연구 (Chemo-Mechanical Polishing Process of Sapphire Wafers for GaN Semiconductor Thin Film Growth)

  • 신귀수;황성원;서남섭;김근주
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.85-91
    • /
    • 2004
  • The sapphire wafers for blue light emitting devices were manufactured by the implementation of the surface machining technology based on micro-tribology. This process has been performed by chemical and mechanical polishing process. The sapphire crystalline wafers were characterized by double crystal X-ray diffraction. The sample quality of sapphire crystalline wafer at surfaces has a full width at half maximum of 89 arcsec. The surfaces of sapphire wafer were mechanically affected by residual stress during the polishing process. The wave pattern of optical interference of sapphire wafer implies higher abrasion rate in the edge of the wafer than its center from the Newton's ring.

수평 Bridgeman법으로 성장된 사파이어기판 가공 및 GaN 박막성장 (GaN epitaxial growths on chemically and mechanically polished sapphire wafers grown by Bridgeman method)

  • 김근주;고재천
    • 한국결정성장학회지
    • /
    • 제10권5호
    • /
    • pp.350-355
    • /
    • 2000
  • 수평 Bridgeman방식으로 성장된 C축 방향의 사파이어 결정기판을 연마 가공하였으며, 또한 유기금속 기상화학 증착 방법으로 사파이어 기판 위에 GaN 박막을 증착하였다. 사파이어 인고트를 성장하여 2인치 사파이어 기판으로 이용하였으며 웨이퍼 절편장치 및 연마장치를 개발하였다. 이러한 다단계의 연마 가공은 기판 표면을 경면화하였다. 표면 평탄도 및 조도는 원자힘현미경으로 측정하였다. 개발된 사파이어 기판위에 성장된 GaN 박막의 특성 및 청색광소자로의 응용 가능성을 확인하였다.

  • PDF

CMP 가공된 사파이어웨이퍼의 웨이퍼내 표면전위에 관한 연구 (A Study on the Zeta-potential of CMP processed Sapphire Wafers)

  • 황성원;신귀수;김근주
    • 한국정밀공학회지
    • /
    • 제22권2호
    • /
    • pp.46-52
    • /
    • 2005
  • The sapphire wafer was polished by the implementation of the surface machining technology based on nano-tribology, The removal process has been performed by grinding, lapping and chemical-mechanical polishing. For the chemical mechanical polishing process, the chemical reaction between the slurry and sapphire wafer was investigated in terms of the change of Zeta-potential between two materials. The Zeta-potential was -4.98 mV without the slurry in deionized water and was -37.05 mV for the slurry solution. By including the slurry into the deionized water the Zeta-potential -29.73 mV, indicating that the surface atoms of sapphire become more repulsive to be easy to separate. The average roughness of the polished surface of sapphire wafer was ranged to 1∼4$\AA$.

광반도체용 사파이어웨이퍼 기계연마특성 연구 (A Study on the Micro-lapping process of Sapphire Wafers for optoelectronic devices)

  • 황성원;신귀수;김근주;서남섭
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.218-223
    • /
    • 2004
  • The sapphire wafers for blue light emitting devices were manufactured by the implementation of the surface machining technology based on micro-tribology. This process has been performed by Micro-lapping process. The sapphire crystalline wafers were characterized by double crystal X-ray diffraction. The sample quality of crystalline sapphire wafer at surface has a full width at half maximum of 250 arcsec. This value at the surface sapphire wafer surfaces indicated 0.12${mu}m$ sizes. Surfaces of sapphire wafers were mechanically affected by residual stress and surface default. As a result, the value of surface roughness of sapphire wafers measured by AFM(Atom Force Microscope) was 2.1nm.

광반도체용 사파이어웨이퍼 기계연마특성 연구 (A Study on the Micro-lapping process of Sapphire Wafers for optoelectronic devices)

  • 황성원;김근주;서남섭
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.82-85
    • /
    • 2003
  • The sapphire wafers for blue light emitting devices were manufactured by the implementation of the surface machining technology based on micro-tribology. This process has been performed by Micro-lapping process. The sapphire crystalline wafers were characterized by DCXD(Double Crystal X-ray Diffraction). The sample quality of crystalline sapphire wafer at surface has a FWHM(Full Width at Half Maximum) of 250 arcsec. This value at the sapphire wafer surfaces indicated 0.12${\mu}{\textrm}{m}$ sizes. Surfaces of sapphire wafers were mechanically affected by residual stress and surface default. Also Surfaces roughness of sapphire wafers were measured 2.1 by AFM(Atom Force Microscope).

  • PDF

사파이어 절삭용 다층 전착 다이아몬드 공구에 대한 연구 (A Study on Electro-deposited Multi-layered Diamond Tool for Grinding Sapphire Wafers)

  • 임고운;송길용;홍주화
    • 열처리공학회지
    • /
    • 제30권5호
    • /
    • pp.222-226
    • /
    • 2017
  • Recently sapphire wafer has expected as smart phone cover material, however, brittle nature of sapphire needed edge grinding processes to prevent early initiation of cracks. Electro-deposited multi-layered groove tools with $35{\mu}m$ diamond particles were studied for sapphire wafer grinding. Solid particle flow behaviors in agitated electrolyte was studied using PIV(Particle Image Velocimetry), and uniform particle distribution in Ni bond were obtained when agitating impeller was located lower part of electrolyte. Hardness values of $400{\pm}50Hv$ were maintained for retention of diamond particles in electro-deposited bond layer. Sapphire wafer edge grinding test was carried out and multi-layered $160{\mu}m$ thick diamond tool showed much greater grinding capabilities up to 2000 sapphire wafers than single-layered $50{\mu}m$ thick diamond electro-deposited tools of 420 wafers. The reason why 3 times thicker multi-layered tools than single-layered tools showed 5 times longer tool lives in grinding processes was attributed to self-dressed new diamond particles in multi-layered tools, and multi-layered diamond tools could be promising for sapphire grinding.

Study on Scribing Sapphire Wafer for LED

  • Moon, Yang-Ho;Kim, Nam-Seung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.341-344
    • /
    • 2006
  • LED chips are produced by cutting the sapphire on which GaN is evaporated. To cut the sapphire wafer into each LED chip, at first the wafer is scribed by diamond tool. To get the sharp groove shape for the nice cutting plane it is important the diamond tool shape, load, etc when the wafer is scribed. Here we tried to simulate the scribing process and get the scribing condition to reduce the wear rate of diamond tool for the sharp groove shape.

  • PDF

사파이어웨이퍼의 기계-화학적인 연마 가공특성에 관한 연구 (A Study on the chemical-mechanical polishing process of Sapphire Wafers for GaN thin film growth.)

  • 남정환;황성원;신귀수;김근주;서남섭
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 기술교육전문연구회
    • /
    • pp.31-34
    • /
    • 2003
  • The sapphire wafers for blue light emitting devices were manufactured by the implementation of the surface machining technology based on micro-tribology. This process has been performed by chemical and mechanical polishing(CMP) process. The sapphire crystalline wafers were characterized by double crystal X-ray diffraction. The sample quality of sapphire crystalline wafer at surfaces has a full width at half maximum 89 arcses. The surfaces of sapphire wafers were mechanically affected by residual stress and surface default. Sapphire wafers's waveness has higher abrasion rate in the edge of the wafer than its center due to Newton's Ring interference.

  • PDF

GaN 증착용 사파이어 웨이퍼의 표면가공에 따른 압흔 특성 (Surface Lapping Process and Vickers Indentation of Sapphire Wafer for GaN Epitaxy)

  • 신귀수;황성원;김근주
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.632-638
    • /
    • 2005
  • The surface lapping process on sapphire wafer was carried out for the epitaxial process of thin film growth of GaN semiconducting material. The planarization of the wafers was investigated by the introduction of the dummy wafers. The diamond lapping process causes the surface deformation of dislocation and micro-cracks. The material deformation due to the mechanical stress was analyzed by the X-ray diffraction and the Vickers indentation. The fracture toughness was increased with the increased annealing temperature indicating the recrystallization at the surface of the sapphire wafer The sudden increase at the temperature of $1200^{\circ}C$ was correlated with the surface phase transition of sapphire from a $-A1_{2}O_{3}\;to\;{\beta}-A1_{2}O_{3}$.

폴리우레탄 패드를 이용한 기계-화학 연마공정에서 파이어 웨이퍼 표면 전위 (Zeta-potential in CMP process of sapphire wafer on poly-urethane pad)

  • 황성원;신귀수;김근주;서남섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1816-1821
    • /
    • 2003
  • The sapphire wafer for blue light emitting device was manufactured by the implementation of the chemical and mechanical polishing process. The surface polishing of crystalline sapphire wafer was characterized by zeta potential measurement. The reduction process with the alkali slurry provides the surface chemical reaction with sapphire atoms. The poly-urethane pad also provides the frictional force to take out the chemically-reacted surface layers. The surface roughness was measured by the atomic force microscope and the crystalline quality was characterized by the double crystal X -ray diffraction analysis.

  • PDF